Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 751435, 12 pages
Research Article

Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects

1Department of Pharmacology, Anesthesiology and Therapeutics, Piracicaba Dental School, University of Campinas (UNICAMP), 13414-903 Piracicaba, SP, Brazil
2Research Center for Chemistry, Biology and Agriculture, University of Campinas (UNICAMP), P.O. Box 6171, 13083-970 Campinas, SP, Brazil
3School of Pharmacy and Dentistry, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
4Department of Agri-food Industry, Food and Nutrition, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo, P.O. Box 9, 13418-900 Piracicaba, SP, Brazil

Received 26 January 2012; Accepted 26 February 2012

Academic Editor: William C. S. Cho

Copyright © 2012 Lívia Câmara de Carvalho Galvão et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This study aimed to evaluate the activity of essential oils (EOs) against Streptococcus mutans biofilm by chemically characterizing their fractions responsible for biological and antiproliferative activity. Twenty EO were obtained by hydrodistillation and submitted to the antimicrobial assay (minimum inhibitory (MIC) and bactericidal (MBC) concentrations) against S. mutans UA159. Thin-layer chromatography and gas chromatography/mass spectrometry were used for phytochemical analyses. EOs were selected according to predetermined criteria and fractionated using dry column; the resulting fractions were assessed by MIC and MBC, selected as active fractions, and evaluated against S. mutans biofilm. Biofilms formed were examined using scanning electron microscopy. Selected EOs and their selected active fractions were evaluated for their antiproliferative activity against keratinocytes and seven human tumor cell lines. MIC and MBC values obtained for EO and their active fractions showed strong antimicrobial activity. Chemical analyses mainly showed the presence of terpenes. The selected active fractions inhibited S. mutans biofilm formation (P<0.05) did not affect glycolytic pH drop and were inactive against keratinocytes, normal cell line. In conclusion, EO showed activity at low concentrations, and their selected active fractions were also effective against biofilm formed by S. mutans and human tumor cell lines.