Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 751435, 12 pages
http://dx.doi.org/10.1155/2012/751435
Research Article

Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects

1Department of Pharmacology, Anesthesiology and Therapeutics, Piracicaba Dental School, University of Campinas (UNICAMP), 13414-903 Piracicaba, SP, Brazil
2Research Center for Chemistry, Biology and Agriculture, University of Campinas (UNICAMP), P.O. Box 6171, 13083-970 Campinas, SP, Brazil
3School of Pharmacy and Dentistry, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
4Department of Agri-food Industry, Food and Nutrition, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo, P.O. Box 9, 13418-900 Piracicaba, SP, Brazil

Received 26 January 2012; Accepted 26 February 2012

Academic Editor: William C. S. Cho

Copyright © 2012 Lívia Câmara de Carvalho Galvão et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Brasil, Ministério da Saúde, Departamento de Atenção Básica, Coordenação Nacional de Saúde Bucal, Projeto SB Brasil 2010—Pesquisa Nacional de Saúde Bucal, Primeiros resultados, Brasília, Brazil, 2011.
  2. P. D. Marsh, “Are dental diseases examples of ecological catastrophes?” Microbiology, vol. 149, no. 2, pp. 279–294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. W. H. Bowen, S. M. Amsbaugh, S. Monell-Torrens, J. Brunelle, H. Kuzmiak-Jones, and M. F. Cole, “A method to assess cariogenic potential of foodstuffs,” The Journal of the American Dental Association, vol. 100, no. 5, pp. 677–681, 1980. View at Google Scholar · View at Scopus
  4. J. K. Kajfasz, I. Rivera-Ramos, J. Abranches et al., “Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans,” Journal of Bacteriology, vol. 192, no. 10, pp. 2546–2556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Ajdić, W. M. McShan, R. E. McLaughlin et al., “Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14434–14439, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. T. M. S. Alves, C. A. Silva, N. B. Silva, E. B. Medeiros, and A. M. G. Valença, “Atividade antimicrobiana de produtos fluoretados sobre bactérias formadoras do biofilme dentario: estudo in vitro,” Pesquisa Brasileira em Odontopediatria e Clínica Integrada, vol. 10, no. 2, pp. 209–216, 2010. View at Google Scholar
  7. J. D. Bader, D. A. Shugars, and A. J. Bonito, “Systematic reviews of selected dental caries diagnostic and management methods.,” Journal of Dental Education, vol. 65, no. 10, pp. 960–968, 2001. View at Google Scholar · View at Scopus
  8. J. Clardy and C. Walsh, “Lessons from natural molecules,” Nature, vol. 432, no. 7019, pp. 829–837, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. G. Jeon, P. L. Rosalen, M. L. Falsetta, and H. Koo, “Natural products in caries research: current (limited) knowledge, challenges and future perspective,” Caries Research, vol. 45, no. 3, pp. 243–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Simões, “Antimicrobial strategies effective against infectious bacterial biofilms,” Current Medicinal Chemistry, vol. 18, no. 14, pp. 2129–2145, 2011. View at Google Scholar · View at Scopus
  11. V. F. Furletti, I. P. Teixeira, G. Obando-Pereda et al., “Action of Coriandrum sativum L. essential oil upon oral Candida albicans biofilm formation,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 985832, 9 pages, 2011. View at Publisher · View at Google Scholar
  12. M. A. Botelho, N. A. P. Nogueira, G. M. Bastos et al., “Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens,” Brazilian Journal of Medical and Biological Research, vol. 40, no. 3, pp. 349–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Silva, “Efeito antimicrobiano in vitro dos compostos isolados da Mikania glomerada sobre os patógenos orais,” [Senior Research Project], Faculdade de Odontologia de Piracicaba, UNICAMP, Piracicaba, Brazil, 2005.
  14. F. Bakkali, S. Averbeck, D. Averbeck, and M. Idaomar, “Biological effects of essential oils—a review,” Food and Chemical Toxicology, vol. 46, no. 2, pp. 446–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. E. Carvalho, “Atividade antiulcerogênica e anticâncer de produtos naturais e de síntese,” Construindo a História dos Produtos Naturais, vol. 7, pp. 1–18, 2006. View at Google Scholar
  16. A. F. Begnami, M. C. T. Duarte, V. Furletti, and V. L. G. Rehder, “Antimicrobial potential of Coriandrum sativum L. against different Candida species in vitro,” Food Chemistry, vol. 118, no. 1, pp. 74–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. P. Adams, Identification of Essential Oils Components by Gas Chromatography/Mass Spectrometry, Allured, Carol Stream, Ill, USA, 2007.
  18. Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard, vol. 26, no. 2, CLSI document M07-A7, Fort Wayne, Ind, USA, 7th edition, 2006.
  19. S. P. Soares, A. H. C. Vinholis, L. A. Casemiro, M. L. A. Silva, W. R. Cunha, and C. H. G. Martins, “Atividade antibacteriana do extrato hidroalcoólico bruto de Stryphnodendron adstringens sobre microorganismos da cárie dental,” Revista Odonto Ciência, vol. 23, no. 2, pp. 141–144, 2008. View at Google Scholar
  20. Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, vol. 29, no. 2, CLSI document M07-A8, Wayne, Pa, USA, 8th edition, 2009.
  21. H. Koo, M. F. Hayacibara, B. D. Schobel et al., “Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol,” Journal of Antimicrobial Chemotherapy, vol. 52, no. 5, pp. 782–789, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. R. O. Mattos-Graner, S. Jin, W. F. King, T. Chen, D. J. Smith, and M. J. Duncan, “Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates,” Infection and Immunity, vol. 69, no. 11, pp. 6931–6941, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Duarte, P. L. Rosalen, M. F. Hayacibara et al., “The influence of a novel propolis on mutans streptococci biofilms and caries development in rats,” Archives of Oral Biology, vol. 51, no. 1, pp. 15–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. P. Hawser and L. J. Douglas, “Biofilm formation by Candida species on the surface of catheter materials in vitro,” Infection and Immunity, vol. 62, no. 3, pp. 915–921, 1994. View at Google Scholar · View at Scopus
  25. A. Monks, D. Scudiero, P. Skehan et al., “Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines,” Journal of the National Cancer Institute, vol. 83, no. 11, pp. 757–766, 1991. View at Google Scholar · View at Scopus
  26. R. H. Shoemaker, “The NCI60 human tumour cell line anticancer drug screen,” Nature Reviews Cancer, vol. 6, no. 10, pp. 813–823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Denny, M. E. Zacharias, A. L. T. G. Ruiz et al., “Antiproliferative properties of polyketides isolated from Virola sebifera leaves,” Phytotherapy Research, vol. 22, no. 1, pp. 127–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Koo, B. P. F. A. Gomes, P. L. Rosalen, G. M. B. Ambrosano, Y. K. Park, and J. A. Cury, “In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens,” Archives of Oral Biology, vol. 45, no. 2, pp. 141–148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. M. C. T. Duarte, E. E. Leme, C. Delarmelina, A. A. Soares, G. M. Figueira, and A. Sartoratto, “Activity of essential oils from Brazilian medicinal plants on Escherichia coli,” Journal of Ethnopharmacology, vol. 111, no. 2, pp. 197–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. L. M. C. Simões, L. E. Gregório, A. A. Silva Filho et al., “Effect of Brazilian green propolis on the production of reactive oxygen species by stimulated neutrophils,” Journal of Ethnopharmacology, vol. 94, no. 1, pp. 59–65, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Burt, “Essential oils: their antibacterial properties and potential applications in foods—a review,” International Journal of Food Microbiology, vol. 94, no. 3, pp. 223–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Knobloch, H. Weigand, N. Weis, H. M. Schwarm, and H. Vigenschow, “Action of terpenoids on energy metabolism,” in Proceedings of the Progress in essential oil research: 16th International Symposium on Essential, E. J. B. Oils, Ed., pp. 429–445, De Gruyter, 1986.
  33. A. Ultee, M. H. J. Bennik, and R. Moezelaar, “The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus,” Applied and Environmental Microbiology, vol. 68, no. 4, pp. 1561–1568, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Marino, C. Bersani, and G. Comi, “Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae,” International Journal of Food Microbiology, vol. 67, no. 3, pp. 187–195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. P. D. Marsh, “Dental plaque: biological significance of a biofilm and community life-style,” Journal of Clinical Periodontology, vol. 32, no. 6, pp. 7–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. D. P. S. Leitão, A. A. Silva Filho, A. C. M. Polizello, J. K. Bastos, and A. C. C. Spadaro, “Comparative evaluation of in-vitro effects of Brazilian green propolis and Baccharis dracunculifolia extracts on cariogenic factors of Streptococcus mutans,” Biological and Pharmaceutical Bulletin, vol. 27, no. 11, pp. 1834–1839, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. N. Eloff, “Which extractant should be used for the screening and isolation of antimicrobial components from plants?” Journal of Ethnopharmacology, vol. 60, no. 1, pp. 1–8, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Calsamiglia, M. Busquet, P. W. Cardozo, L. Castillejos, and A. Ferret, “Invited review: essential oils as modifiers of rumen microbial fermentation,” Journal of Dairy Science, vol. 90, no. 6, pp. 2580–2595, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. I. H. N. Bassole, R. Nebie, A. Savadogo, C. T. Ouattara, N. Barro, and S. A. Traore, “Composition and antimicrobial activities of the leaf and flower essential oils of Lippia chevalieri and Ocimum canum from Burkina Faso,” African Journal of Biotechnology, vol. 4, no. 10, pp. 1156–1160, 2005. View at Google Scholar · View at Scopus
  40. N. A. Parreira, L. G. Magalhães, D. R. Morais et al., “Antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of baccharis dracunculifolia,” Chemistry and Biodiversity, vol. 7, no. 4, pp. 993–1001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Kizil, N. Haşimi, V. Tolan, E. Kilinç, and H. Karataş, “Chemical composition, antimicrobial and antioxidant activities of hyssop (Hyssopus officinalis L.) essential oil,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 38, no. 3, pp. 99–103, 2010. View at Google Scholar · View at Scopus
  42. F. Silva, S. Ferreira, J. A. Queiroz, and F. C. Domingues, “Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry,” Journal of Medical Microbiology, vol. 60, no. 10, pp. 1479–1486, 2011. View at Google Scholar
  43. R. J. W. Lambert, P. N. Skandamis, P. J. Coote, and G. J. E. Nychas, “A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol,” Journal of Applied Microbiology, vol. 91, no. 3, pp. 453–462, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Lacoste, J. P. Chaumont, D. Mandin, M. M. Plumel, and F. J. Matos, “Antiseptic properties of the essential oil of Lippia sidoides Cham: application to the cutaneous microflora,” Annales Pharmaceutiques Francaises, vol. 54, no. 5, pp. 228–230, 1996. View at Google Scholar · View at Scopus
  45. G. Fouche, G. M. Cragg, P. Pillay, N. Kolesnikova, V. J. Maharaj, and J. Senabe, “In vitro anticancer screening of South African plants,” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 455–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. K. M. Swanson and R. J. Hohl, “Anti-cancer therapy: targeting the mevalonate pathway,” Current Cancer Drug Targets, vol. 6, no. 1, pp. 15–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. E. Edris, “Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review,” Phytotherapy Research, vol. 21, no. 4, pp. 308–323, 2007. View at Publisher · View at Google Scholar · View at Scopus