Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 818072, 7 pages
Research Article

Effects of Eurycoma longifolia on Testosterone Level and Bone Structure in an Aged Orchidectomised Rat Model

1Kulliyyah of Medicine and Health Sciences, Insaniah University College, Lebuhraya Sultanah Bahiyah, 05350 Alor Setar, Malaysia
2Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
3Institute of Research & Post Graduate Studies, Allianze University College of Medical Sciences, Waziria Medical Square, 13200 Kepala Batas, Malaysia

Received 7 June 2012; Accepted 20 July 2012

Academic Editor: Norazlina Mohamed

Copyright © 2012 Abdul Shukor Tajul Ariff et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Testosterone replacement is the choice of treatment in androgen-deficient osteoporosis. However, long-term use of testosterone is potentially carcinogenic. Eurycoma longifolia (EL) has been reported to enhance testosterone level and prevent bone calcium loss but there is a paucity of research regarding its effect on the bone structural parameters. This study was conducted to explore the bone structural changes following EL treatment in normal and androgen-deficient osteoporosis rat model. Thirty-six male Sprague-Dawley rats aged 12 months were divided into normal control, normal rat supplemented with EL, sham-operated, orchidectomised-control, orchidectomised with testosterone replacement, and orchidectomised with EL supplementation groups. Testosterone serum was measured both before and after the completion of the treatment. After 6 weeks of the treatment, the femora were processed for bone histomorphometry. Testosterone replacement was able to raise the testosterone level and restore the bone volume of orchidectomised rats. EL supplementation failed to emulate both these testosterone actions. The inability of EL to do so may be related to the absence of testes in the androgen deficient osteoporosis model for EL to stimulate testosterone production.