Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 821967, 8 pages
http://dx.doi.org/10.1155/2012/821967
Research Article

Topical Application of Chrysanthemum indicum L. Attenuates the Development of Atopic Dermatitis-Like Skin Lesions by Suppressing Serum IgE Levels, IFN-γ, and IL-4 in Nc/Nga Mice

1Department of Food and Nutrition, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do 336-795, Republic of Korea
2Department of Mechatronics Engineering, Hoseo University, Asan 336-795, Republic of Korea

Received 22 September 2011; Revised 25 October 2011; Accepted 1 November 2011

Academic Editor: Shrikant Anant

Copyright © 2012 Sunmin Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Y. Leung and T. Bieber, “Atopic dermatitis,” The Lancet, vol. 361, no. 9352, pp. 151–160, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. K. Yamanaka and H. Mizutani, “The role of cytokines/chemokines in the pathogenesis of atopic dermatitis,” Current Problems in Dermatology, vol. 41, pp. 80–92, 2011. View at Publisher · View at Google Scholar · View at PubMed
  3. W. Abramovits, “Atopic dermatitis,” Journal of the American Academy of Dermatology, vol. 53, no. 1, supplement 1, pp. S86–S93, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. H. Jin, R. He, M. Oyoshi, and R. S. Geha, “Animal models of atopic dermatitis,” Journal of Investigative Dermatology, vol. 129, no. 1, pp. 31–40, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. P. Alcaide, S. L. King, C. J. Dimitroff, Y. C. Lim, R. C. Fuhlbrigge, and F. W. Luscinskas, “The 130-kDa glycoform of CD43 functions as an E-selectin ligand for activated Th1 cells in vitro and in delayed-type hypersensitivity reactions in vivo,” Journal of Investigative Dermatology, vol. 127, no. 8, pp. 1964–1972, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. K. Hattori, M. Nishikawa, K. Watcharanurak et al., “Sustained exogenous expression of therapeutic levels of IFN-γ ameliorates atopic dermatitis in NC/Nga mice via Th1 polarization,” Journal of Immunology, vol. 184, no. 5, pp. 2729–2735, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. A. Grassegger and R. Höpfl, “Significance of the cytokine interferon gamma in clinical dermatology,” Clinical and Experimental Dermatology, vol. 29, no. 6, pp. 584–588, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. T. Shiohara, J. Hayakawa, and Y. Mizukawa, “Animal models for atopic dermatitis: are they relevant to human disease?” Journal of Dermatological Science, vol. 36, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. Y. Tomimori, Y. Tanaka, M. Goto, and Y. Fukuda, “Repeated topical challenge with chemical antigen elicits sustained dermatitis in NC/Nga mice in specific-pathogen-free condition,” Journal of Investigative Dermatology, vol. 124, no. 1, pp. 119–124, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. B. G. Jung, S. J. Cho, H. B. Koh, D. U. Han, and B. J. Lee, “Fermented Maesil (Prunus mume) with probiotics inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice,” Veterinary Dermatology, vol. 21, no. 2, pp. 184–191, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. X. F. Qi, D. H. Kim, Y. S. Yoon et al., “Effects of Bambusae caulis in Liquamen on the development of atopic dermatitis-like skin lesions in hairless mice,” Journal of Ethnopharmacology, vol. 123, no. 2, pp. 195–200, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. K. Takeshita, T. Yamasaki, S. Akira, F. Gantner, and K. B. Bacon, “Essential role of MHC II-independent CD4+ T cells, IL-4 and STAT6 in contact hypersensitivity induced by fluorescein isothiocyanate in the mouse,” International Immunology, vol. 16, no. 5, pp. 685–695, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. Kim, I. S. Lee, S. Park, and R. Choue, “Effects of Scutellariae radix and Aloe vera gel extracts on immunoglobulin E and cytokine levels in atopic dermatitis NC/Nga mice,” Journal of Ethnopharmacology, vol. 132, no. 2, pp. 529–532, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. Kawai, T. Hirano, S. Higa et al., “Flavonoids and related compounds as anti-allergic substances,” Allergology International, vol. 56, no. 2, pp. 113–123, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. S. Cheon, T. Yoon, D. Y. Lee et al., “Chrysanthemum indicum Linné extract inhibits the inflammatory response by suppressing NF-κB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophages,” Journal of Ethnopharmacology, vol. 122, no. 3, pp. 473–477, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. K. Pongjit, C. Ninsontia, C. Chaotham, and P. Chanvorachote, “Protective effect of glycine max and chrysanthemum indicum extracts against cisplatin-induced renal epithelial cell death,” Human and Experimental Toxicology, vol. 30, no. 12, pp. 1931–1944, 2011. View at Publisher · View at Google Scholar · View at PubMed
  17. H. Matsuda, T. Morikawa, I. Toguchida, S. Harima, and M. Yoshikawa, “Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase,” Chemical & Pharmaceutical Bulletin, vol. 50, no. 7, pp. 972–975, 2002. View at Google Scholar
  18. M. Yoshikawa, T. Morikawa, I. Toguchida, S. Harima, and H. Matsuda, “Medicinal flowers. II. Inhibitors of nitric oxide production and absolute stereostructures of five new germacrane-type sesquiterpenes, kikkanols D, D monoacetate, E, F, and F monoacetate from the flowers of Chrysanthemum indicum L,” Chemical & Pharmaceutical Bulletin, vol. 48, no. 5, pp. 651–656, 2000. View at Google Scholar · View at Scopus
  19. E. J. Choi, S. Lee, H. -H. Kim et al., “Suppression of dust mite extract and 2,4-dinitrochlorobenzene-induced atopic dermatitis by the water extract of Lindera obtusiloba,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 802–807, 2011. View at Publisher · View at Google Scholar · View at PubMed
  20. B. Kunz, A. P. Oranje, L. Labrèze, J. F. Stalder, J. Ring, and A. Taïeb, “Clinical validation and guidelines for the SCORAD index: consensus report of the European Task Force on Atopic Dermatitis,” Dermatology, vol. 195, no. 1, pp. 10–19, 1997. View at Google Scholar · View at Scopus
  21. H. Matsuda, N. Watanabe, G. P. Geba et al., “Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice,” International Immunology, vol. 9, no. 3, pp. 461–466, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Vestergaard, H. Yoneyama, and K. Matsushima, “The NC/Nga mouse: a model for atopic dermatitis,” Molecular Medicine Today, vol. 6, no. 5, pp. 209–210, 2000. View at Google Scholar
  23. M. D. Wolverton and E. Stephen, Comprehensive Dermatologic Drug Therapy, WB Saunders, Philadelphia, Pa, USA, 2001.
  24. J. Koo and S. Arain, “Traditional chinese medicine for the treatment of dermatologic disorders,” Archives of Dermatology, vol. 134, no. 11, pp. 1388–1393, 1998. View at Google Scholar · View at Scopus
  25. T. Kawakami, T. Ando, M. Kimura, B. S. Wilson, and Y. Kawakami, “Mast cells in atopic dermatitis,” Current Opinion in Immunology, vol. 21, no. 6, pp. 666–678, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus