Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 840247, 10 pages
http://dx.doi.org/10.1155/2012/840247
Research Article

The Antiparkinsonian and Antidyskinetic Mechanisms of Mucuna pruriens in the MPTP-Treated Nonhuman Primate

1Buck Institute for Research on Aging, Novato, CA 94945, USA
2Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
3Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
4Center for Neurological Restoration, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA

Received 26 May 2012; Accepted 27 July 2012

Academic Editor: Paul Siu-Po Ip

Copyright © 2012 Christopher A. Lieu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Behari, S. P. Bhatnagar, U. Muthane, and D. Deo, “Experiences of Parkinson's disease in India,” The Lancet Neurology, vol. 1, no. 4, pp. 258–262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Deogaonkar and T. Subramanian, “Pathophysiological basis of drug-induced dyskinesias in Parkinson's disease,” Brain Research Reviews, vol. 50, no. 1, pp. 156–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kuzuhara, “Drug-induced psychotic symptoms in Parkinson's disease. Problems, management and dilemma,” Journal of Neurology, vol. 248, supplement 3, pp. III28–III31, 2001. View at Google Scholar · View at Scopus
  4. V. Voon, P. O. Fernagut, J. Wickens et al., “Chronic dopaminergic stimulation in Parkinson's disease: from dyskinesias to impulse control disorders,” The Lancet Neurology, vol. 8, no. 12, pp. 1140–1149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. B. V. Manyam, “Paralysis agitans and levodopa in “Ayurveda”: ancient Indian medical treatise,” Movement Disorders, vol. 5, no. 1, pp. 47–48, 1990. View at Google Scholar · View at Scopus
  6. B. V. Manyam and J. R. Sánchez-Ramos, “Traditional and complementary therapies in Parkinson's disease,” Advances in Neurology, vol. 80, pp. 565–574, 1999. View at Google Scholar · View at Scopus
  7. B. Singhal, J. Lalkaka, and C. Sankhla, “Epidemiology and treatment of Parkinson's disease in India,” Parkinsonism and Related Disorders, vol. 9, supplement 2, pp. S105–S109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. HP-200 in Parkinson's Disease Study Group, “An alternative medicine treatment for Parkinson's disease: results of a multicenter clinical trial,” Journal of Alternative and Complementary Medicine, vol. 1, pp. 249–255, 1995. View at Google Scholar
  9. R. Katzenshlager, A. Evans, A. Manson et al., “Mucuna pruriens in Parkinson's disease: a double blind clinical and pharmacological study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 12, pp. 1672–1677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. B. Vaidya, T. G. Rajagopalan, and N. A. Mankodi, “Treatment of Parkinson's disease with the cowhage plant—Mucuna pruriens Bak,” Neurology India, vol. 26, no. 4, pp. 171–176, 1978. View at Google Scholar · View at Scopus
  11. O. Suchowersky, G. Gronseth, J. Perlmutter, S. Reich, T. Zesiewicz, and W. J. Weiner, “Practice parameter: neuroprotective strategies and alternative therapies for Parkinson disease (an evidence-based review): report of the quality standards subcommittee of the American Academy of Neurology,” Neurology, vol. 66, no. 7, pp. 976–982, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Lieu, A. R. Kunselman, B. V. Manyam, K. Venkiteswaran, and T. Subramanian, “A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias,” Parkinsonism and Related Disorders, vol. 16, no. 7, pp. 458–465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Oiwa, J. L. Eberling, D. Nagy, P. Pivirotto, M. E. Emborg, and K. S. Bankiewicz, “Overlesioned hemiparkinsonian non human primate model: correlation between clinical, neurochemical and histochemical changes,” Frontiers in Bioscience, vol. 8, pp. a155–a166, 2003. View at Google Scholar · View at Scopus
  14. T. Subramanian, C. A. Lieu, K. Guttalu, and D. Berg, “Detection of MPTP-induced substantia nigra hyperechogenicity in rhesus monkeys by transcranial ultrasound,” Ultrasound in Medicine and Biology, vol. 36, no. 4, pp. 604–609, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. A. Lieu, M. Deogaonkar, R. A. E. Bakay, and T. Subramanian, “Dyskinesias do not develop after chronic intermittent levodopa therapy in clinically hemiparkinsonian rhesus monkeys,” Parkinsonism and Related Disorders, vol. 17, no. 1, pp. 34–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. P. Gilmour, C. A. Lieu, M. J. Nolt, B. Piallat, M. Deogaonkar, and T. Subramanian, “The effects of chronic levodopa treatments on the neuronal firing properties of the subthalamic nucleus and substantia nigra reticulata in hemiparkinsonian rhesus monkeys,” Experimental Neurology, vol. 228, no. 1, pp. 53–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. E. V. Gilbert, J. K. Leszczynski, T. Subramanian, and J. Zhang, “Methods to provide enrichment to MPTP-treated hemiparkinsonian (HP) monkeys without interfering with operant conditioned behavioral testing,” Program 67616, Neuroscience Meeting Planner, Society for Neuroscience, San Diego, Calif, USA, 2004. View at Google Scholar
  18. S. Konitsiotis, P. J. Blanchet, L. Verhagen, E. Lamers, and T. N. Chase, “AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys,” Neurology, vol. 54, no. 8, pp. 1589–1595, 2000. View at Google Scholar · View at Scopus
  19. P. J. Blanchet, S. Konitsiotis, and T. N. Chase, “Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys,” Movement Disorders, vol. 13, no. 5, pp. 798–802, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. W. D. Hutchison, R. Levy, J. O. Dostrovsky, A. M. Lozano, and A. E. Lang, “Effects of apomorphine on globus pallidus neurons in parkinsonian patients,” Annals of Neurology, vol. 42, no. 5, pp. 767–775, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. C. R. Legendy and M. Salcman, “Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons,” Journal of Neurophysiology, vol. 53, no. 4, pp. 926–939, 1985. View at Google Scholar · View at Scopus
  22. Y. Kaneoke and J. L. Vitek, “Burst and oscillation as disparate neuronal properties,” Journal of Neuroscience Methods, vol. 68, no. 2, pp. 211–223, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate and sample entropy,” American Journal of Physiology, vol. 278, no. 6, pp. H2039–H2049, 2000. View at Google Scholar · View at Scopus
  24. S. Burgess, A. Hemmer, and R. Myhrman, “Examination of raw and roasted Mucuna pruriens for tumerogenic substances,” Tropical and Subtropical Agroecosystems, vol. 1, pp. 287–293, 2003. View at Google Scholar
  25. B. V. Manyam, M. Dhanasekaran, and T. A. Hare, “Neuroprotective effects of the antiparkinson drug Mucuna pruriens,” Phytotherapy Research, vol. 18, no. 9, pp. 706–712, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. B. V. Manyam, M. Dhanasekaran, and T. A. Hare, “Effect of antiparkinson drug HP-200 (Mucuna pruriens) on the central monoaminergic neurotransmitters,” Phytotherapy Research, vol. 18, no. 2, pp. 97–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Lafreniere-Roula, O. Darbin, W. D. Hutchison, T. Wichmann, A. M. Lozano, and J. O. Dostrovsky, “Apomorphine reduces subthalamic neuronal entropy in parkinsonian patients,” Experimental Neurology, vol. 225, no. 2, pp. 455–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. M. Lozano, A. E. Lang, R. Levy, W. Hutchison, and J. Dostrovsky, “Neuronal recordings in Parkinson's disease patients with dyskinesias induced by apomorphine,” Annals of Neurology, vol. 47, no. 4, supplement 1, pp. S141–S146, 2000. View at Google Scholar · View at Scopus
  29. R. Levy, J. O. Dostrovsky, A. E. Lang, E. Sime, W. D. Hutchison, and A. M. Lozano, “Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease,” Journal of Neurophysiology, vol. 86, no. 1, pp. 249–260, 2001. View at Google Scholar · View at Scopus
  30. T. Boraud, E. Bezard, D. Guehl, B. Bioulac, and C. Gross, “Effects of L-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey,” Brain Research, vol. 787, no. 1, pp. 157–160, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Giannicola, S. Marceglia, L. Rossi et al., “The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson's disease,” Experimental Neurology, vol. 226, no. 1, pp. 120–127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Heimer, M. Rivlin-Etzion, I. Bar-Gad, J. A. Goldberg, S. N. Haber, and H. Bergman, “Dopamine replacement therapy does not restore the full spectrum of normal pallidal activity in the 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine primate model of Parkinsonism,” Journal of Neuroscience, vol. 26, no. 31, pp. 8101–8114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. R. L. Albin, A. B. Young, and J. B. Penney, “The functional anatomy of basal ganglia disorders,” Trends in Neurosciences, vol. 12, no. 10, pp. 366–375, 1989. View at Google Scholar · View at Scopus
  34. M. R. DeLong, “Primate models of movement disorders of basal ganglia origin,” Trends in Neurosciences, vol. 13, no. 7, pp. 281–285, 1990. View at Google Scholar · View at Scopus
  35. J. I. Lee, H. J. Shin, D. H. Nam et al., “Increased burst firing in substantia nigra pars reticulata neurons and enhanced response to selective D2 agonist in hemiparkinsonian rats after repeated administration of apomorphine,” Journal of Korean Medical Science, vol. 16, no. 5, pp. 636–642, 2001. View at Google Scholar · View at Scopus
  36. K. Y. Tseng, L. A. Riquelme, J. E. Belforte, J. H. Pazo, and M. G. Murer, “Substantia nigra pars reticulata units in 6-hydroxydopamine-lesioned rats: responses to striatal D2 dopamine receptor stimulation and subthalamic lesions,” European Journal of Neuroscience, vol. 12, no. 1, pp. 247–256, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Z. Shen, L. B. Kozell, and S. W. Johnson, “Multiple conductances are modulated by 5-HT receptor subtypes in rat subthalamic nucleus neurons,” Neuroscience, vol. 148, no. 4, pp. 996–1003, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. W. Langston, M. Quik, G. Petzinger, M. Jakowec, and D. A. Di Monte, “Investigating levodopa-induced dyskinesias in the Parkinsonian primate,” Annals of Neurology, vol. 47, no. 4, pp. S79–S89, 2000. View at Google Scholar · View at Scopus
  39. S. Kasture, S. Pontis, A. Pinna et al., “Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens seed extract in rodent model of Parkinson's disease,” Neurotoxicity Research, vol. 15, no. 2, pp. 111–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Hussian and B. V. Manyam, “Mucuna pruriens proves more effective than L-DOPA in Parkinson's disease animal model,” Phytotherapy Research, vol. 11, pp. 419–423, 1997. View at Google Scholar