Table of Contents Author Guidelines Submit a Manuscript

This article has been retracted as it is essentially identical in content with a previously published paper titled “A Review of the Efficacy and Safety of Banaba (Lagerstroemia speciosa L.) and Corosolic Acid”, by “Sidney J. Stohs, Howard Miller, Gilbert R. Kaats” in “Phytotherapy Research”, Volume 26, Issue 3, pages 317–324, March 2012 [1].

View the full Retraction here.


  1. T. Miura, S. Takagi, and T. Ishida, “Management of diabetes and its complications with banaba (Lagerstroemia speciosa L.) and corosolic acid,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 871495, 8 pages, 2012.
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 871495, 8 pages
Review Article

Management of Diabetes and Its Complications with Banaba (Lagerstroemia speciosa L.) and Corosolic Acid

1Department of Clinical Nutrition, Suzuka University of Medical Science, Mie 510-0293, Japan
2Department of Acupuncture and Moxibustion, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan

Received 22 May 2012; Accepted 5 September 2012

Academic Editor: Benny Tan Kwong Huat

Copyright © 2012 Toshihiro Miura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Banaba (Lagerstroemia speciosa L.) extracts have been used for many years in folk medicine to treat diabetes, with the first published research study being reported in 1940. This paper summarizes the current literature regarding Banaba and its constituents. The hypoglycemic effects of Banaba have been attributed to both corosolic acid as well as ellagitannins. Studies have been conducted in various animal models, human subjects, and in vitro systems using water soluble Banaba leaf extracts, corosolic acid, and ellagitannins. Corosolic acid has been reported to decrease blood sugar levels within 60 min in human subjects. Corosolic acid also exhibits antihyperlipidemic and antioxidant activities. The beneficial effects of Banaba and corosolic acid with respect to various aspects of glucose and lipid metabolism appear to involve multiple mechanisms, including enhanced cellular uptake of glucose, impaired hydrolysis of sucrose and starches, decreased gluconeogenesis, and the regulation of lipid metabolism. These effects may be mediated by PPAR and other signal transduction factors. Banaba extract, corosolic acid, and other constituents may be beneficial in addressing the symptoms associated with metabolic syndrome, as well as offering other health benefits.