Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 908439, 14 pages
Research Article

The Cortical and Striatal Gene Expression Profile of 100 Hz Electroacupuncture Treatment in 6-Hydroxydopamine-Induced Parkinson's Disease Model

1Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
2Department of Neurology, Stanford University, Stanford, CA 94305, USA
3Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

Received 30 April 2011; Revised 5 September 2011; Accepted 26 September 2011

Academic Editor: Edwin L. Cooper

Copyright © 2012 Li-Rong Huo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary Material

Supplementary Materials include two parts: Tables (Table S1-S13) and Figure S1. Table S1 included the primers which were used in real-time PCR. The related functional categories of the transcripts regulated in 16 types profiles in Figure 3 were listed in Tables S2–8. The mutual regulated transcripts in both the cortex and STR were listed in Table S9, and the mutual regulated functional categories in both the cortex and STR were listed in Table S10. If Log2 absolute (EA-Model) ≥ 1 and p < 0.05, the regulated transcripts were listed in Table S11. The results of pathway analysis for regulated transcripts by EA were listed in Table S12. And the corresponding functions of expressed products for some important transcripts (Discussion section) were listed in Table S13. The complete Dynamic Gene Network of the cortex and STR are presented in Figure S1.

Figure Legends for Supplementary Materials: Figure S1 Dynamic Gene Network for genes in profile Aa-Af of Fig.3. The Dynamic Gene Network of the cortex is presented in S1A and S1B. The blue dots indicate the differentially regulated genes. The lines show the relationships between genes. The solid line denotes positive regulation, and the dashed line denotes negative regulation. The size of the dots indicates the capability of the gene to interact with others. This capability was quantified by “degree” (refer to “Materials and Methods”). The larger the degree, the more genes interacted with the corresponding gene were and the more important this gene was in the network.

  1. Supplementary Material