Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 918174, 9 pages
http://dx.doi.org/10.1155/2012/918174
Research Article

Copaiba Oil-Resin Treatment Is Neuroprotective and Reduces Neutrophil Recruitment and Microglia Activation after Motor Cortex Excitotoxic Injury

1Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, 66075-900 Belém, PA, Brazil
2Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
3Laboratory of Ore Processing, Federal University of Pará, Marabá, PA, Brazil
4Chemistry Laboratory, Federal University of Pará, Abaetuba, PA, Brazil
5Laboratory of Biotechnology, EMBRAPA, Belém, PA, Brazil

Received 23 September 2011; Revised 5 November 2011; Accepted 16 November 2011

Academic Editor: Bhushan Patwardhan

Copyright © 2012 Adriano Guimarães-Santos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Villarreal, J. Zagorski, and S. M. T. Wahl, “Inflammation: acute,” Encyclopedia of Life Sciences, pp. 1–8, 2001. View at Google Scholar
  2. S. Amor, F. Puentes, D. Baker, and P. Van Der Valk, “Inflammation in neurodegenerative diseases,” Immunology, vol. 129, no. 2, pp. 154–169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. R. Lima, J. Guimaraes-Silva, J. L. Oliveira et al., “Diffuse axonal damage, myelin impairment, astrocytosis and inflammatory response following microinjections of NMDA into the rat striatum,” Inflammation, vol. 31, no. 1, pp. 24–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Thored, U. Heldmann, W. Gomes-Leal et al., “Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke,” Glia, vol. 57, no. 8, pp. 835–849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Gomes-Leal, D. J. Corkill, M. A. Freire, C. W. Picanço-Diniz, and V. H. Perry, “Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury,” Experimental Neurology, vol. 190, no. 2, pp. 456–467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Morioka, A. N. Kalehua, and W. J. Streit, “Characterization of microglial reaction after middle cerebral artery occlusion in rat brain,” Journal of Comparative Neurology, vol. 327, no. 1, pp. 123–132, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hirose, K. Okajima, Y. Taoka et al., “Activated protein C reduces the ischemia/reperfusion-induced spinal cord injury in rats by inhibiting neutrophil activation,” Annals of Surgery, vol. 232, no. 2, pp. 272–280, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Neumann, S. Sauerzweig, R. Rönicke et al., “Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege,” Journal of Neuroscience, vol. 28, no. 23, pp. 5965–5975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Taoka, K. Okajima, K. Murakami, M. Johno, and M. Naruo, “Role of neutrophil elastase in compression-induced spinal cord injury in rats,” Brain Research, vol. 799, no. 2, pp. 264–269, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Yrjänheikki, T. Tikka, R. Keinänen, G. Goldsteins, P. H. Chan, and J. Koistinaho, “A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13496–13500, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. S. E. Akopov, N. A. Simonian, and G. S. Grigorian, “Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage,” Stroke, vol. 27, no. 10, pp. 1739–1743, 1996. View at Google Scholar · View at Scopus
  12. J. M. Schwab, T. D. Nguyen, R. Meyermann, and H. J. Schluesener, “Human focal cerebral infarctions induce differential lesional interleukin-16 (IL-16) expression confined to infiltrating granulocytes, CD8+ T-lymphocytes and activated microglia/macrophages,” Journal of Neuroimmunology, vol. 114, no. 1-2, pp. 232–241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. D. Skaper, “Ion channels on microglia: therapeutic targets for neuroprotection,” CNS & Neurological Disorders Drug Targets, vol. 10, no. 1, pp. 44–56, 2011. View at Google Scholar
  14. Y. Taoka, K. Okajima, M. Uchiba et al., “Role of neutrophils in spinal cord injury in the rat,” Neuroscience, vol. 79, no. 4, pp. 1177–1182, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. S. C. Fagan, J. L. Waller, F. T. Nichols et al., “Minocycline to Improve Neurologic Outcome in Stroke (MINOS): a dose-finding study,” Stroke, vol. 41, no. 10, pp. 2283–2287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. V. W. Yong, J. Wells, F. Giuliani, S. Casha, C. Power, and L. M. Metz, “The promise of minocycline in neurology,” Lancet Neurology, vol. 3, no. 12, pp. 744–751, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Kobayashi, T. O. Fontanive, B. G. Enzweiler et al., “Pharmacological evaluation of Copaifera multijuga oil in rats,” Pharmaceutical Biology, vol. 49, no. 3, pp. 306–313, 2011. View at Publisher · View at Google Scholar
  18. L. A. F. Paiva, L. A. Gurgel, E. T. De Sousa et al., “Protective effect of Copaifera langsdorffii oleo-resin against acetic acid-induced colitis in rats,” Journal of Ethnopharmacology, vol. 93, no. 1, pp. 51–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. V. F. Veiga, E. C. Rosas, M. V. Carvalho, M. G. M. O. Henriques, and A. C. Pinto, “Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne—a comparative study,” Journal of Ethnopharmacology, vol. 112, no. 2, pp. 248–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. N. D. M. Gomes, C. D. M. Rezende, S. P. Fontes et al., “Antineoplasic activity of Copaifera multijuga oil and fractions against ascitic and solid Ehrlich tumor,” Journal of Ethnopharmacology, vol. 119, no. 1, pp. 179–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. O. Santos, T. Ueda-Nakamura, B. P. Dias Filho, V. F. Veiga Junior, A. C. Pinto, and C. V. Nakamura, “Effect of Brazilian copaiba oils on Leishmania amazonensis,” Journal of Ethnopharmacology, vol. 120, no. 2, pp. 204–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. NIH, “Public health service policy on humane care and use of laboratory animals,” pp. 1–20, 1985.
  23. W. Gomes-Leal, D. J. Corkill, and C. W. Picanço-Diniz, “Systematic analysis of axonal damage and inflammatory response in different white matter tracts of acutely injured rat spinal cord,” Brain Research, vol. 1066, no. 1-2, pp. 57–70, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. WHO, “WHO guidelines on good agricultural and collection practices for medicinal plants,” pp. 1–73, 2003. View at Google Scholar
  25. J. P. B. Sousa, A. P. S. Brancalion, A. B. Souza et al., “Validation of a gas chromatographic method to quantify sesquiterpenes in copaiba oils,” Journal of Pharmaceutical and Biomedical Analysis, vol. 54, no. 4, pp. 653–659, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. P. Adams, Identification of Essential oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, Allured Publishing Corporatoin, Carol Stream, Ill, USA, 2007.
  27. A. P. Robinson, T. M. White, and D. W. Mason, “Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3,” Immunology, vol. 57, no. 2, pp. 239–247, 1986. View at Google Scholar · View at Scopus
  28. M. Ayres, Biostat 5.0, Sociedade Civil Mamirauá/MCT/CNPQ. Imprensa Oficial do Estado do Pará, Belém, Brazil, 2007.
  29. S. J. Bolton and V. H. Perry, “Differential blood-brain barrier breakdown and leucocyte recruitment following excitotoxic lesions in juvenile and adult rats,” Experimental Neurology, vol. 154, no. 1, pp. 231–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Guimarães, M. A. M. Freire, R. R. Lima, C. W. Picanço-Diniz, A. Pereira, and W. Gomes-Leal, “Minocycline treatment reduces white matter damage after excitotoxic striatal injury,” Brain Research, vol. 1329, no. C, pp. 182–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. J. De Lima Silva, S. B. Guimarães, E. R. Da Silveira et al., “Effects of copaifera langsdorffii desf. on ischemia-reperfusion of randomized skin flaps in rats,” Aesthetic Plastic Surgery, vol. 33, no. 1, pp. 104–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Holmin, J. Söderlund, P. Biberfeld, and T. Mathiesen, “Intracerebral inflammation after human brain contusion,” Neurosurgery, vol. 42, no. 2, pp. 291–299, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. D. P. Stirling, K. Khodarahmi, J. Liu et al., “Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury,” Journal of Neuroscience, vol. 24, no. 9, pp. 2182–2190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Thiel and W. D. Heiss, “Imaging of microglia activation in stroke,” Stroke, vol. 42, no. 2, pp. 507–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. F. C. Barone, L. M. Hillegass, W. J. Price et al., “Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification,” Journal of Neuroscience Research, vol. 29, no. 3, pp. 336–345, 1991. View at Publisher · View at Google Scholar · View at Scopus
  36. J. E. Jordan, Z. Q. Zhao, and J. Vinten-Johansen, “The role of neutrophils in myocardial ischemia-reperfusion injury,” Cardiovascular Research, vol. 43, no. 4, pp. 860–878, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Gertsch, M. Leonti, S. Raduner et al., “Beta-caryophyllene is a dietary cannabinoid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 26, pp. 9099–9104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Y. Cho, H. J. Chang, S. K. Lee, H. J. Kim, J. K. Hwang, and H. S. Chun, “Amelioration of dextran sulfate sodium-induced colitis in mice by oral administration of β-caryophyllene, a sesquiterpene,” Life Sciences, vol. 80, no. 10, pp. 932–939, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Rajesh, P. Mukhopadhyay, G. Haskó, J. W. Huffman, K. Mackie, and P. Pacher, “CB2 cannabinoid receptor agonists attenuate TNF-α-induced human vascular smooth muscle cell proliferation and migration,” British Journal of Pharmacology, vol. 153, no. 2, pp. 347–357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. A. P. Rogerio, E. L. Andrade, D. F. P. Leite, C. P. Figueiredo, and J. B. Calixto, “Preventive and therapeutic anti-inflammatory properties of the sesquiterpene α-humulene in experimental airways allergic inflammation,” British Journal of Pharmacology, vol. 158, no. 4, pp. 1074–1087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Medeiros, G. F. Passos, C. E. Vitor et al., “Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw,” British Journal of Pharmacology, vol. 151, no. 5, pp. 618–627, 2007. View at Publisher · View at Google Scholar · View at Scopus