Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 983801, 13 pages
Research Article

In Vivo and In Vitro Antinociceptive Effect of Fagopyrum cymosum (Trev.) Meisn Extracts: A Possible Action by Recovering Intestinal Barrier Dysfunction

1Institute of First Clinical Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210046, China
2Department of Liver Disease, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210029, China
3Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Jiangsu, Nanjing 210028, China
4Institute of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210046, China

Received 5 August 2012; Revised 31 October 2012; Accepted 31 October 2012

Academic Editor: Annie Shirwaikar

Copyright © 2012 Lina Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Fagopyrum cymosum (Trev.) Meisn (Fag) is a herb rhizome which has been widely used to treat diseases. To investigate the effects and mechanisms of the Fag on irritable bowel syndrome (IBS), in vivo neonatal pups maternal separation (NMS) combined with intracolonic infusion of acetic acid (AA) was employed to establish IBS rat models. Fag reduced their visceral hyperalgesia and the whole gut permeability, ameliorated colonic mucosa inflammation and injury, and upregulated the expression of decreased tight junction proteins (TJs) of claudin-1, occludin, and ZO-1 (except ZO-2) in colonic epithelium. Caco-2 monolayer cells were incubated with TNF-α and IFN-γ  in vitro to establish an epithelial barrier dysfunction model whose transepithelial electrical resistance (TER) depended more on dose of Fag than that of the controls, and whose TJs levels were lower than those of the controls. Fag upregulated the NP-40 insoluble and soluble components of the four TJs markedly in a dose-dependent manner. These data suggest that Fag alleviated the hyperalgesia of IBS rats by reducing intestinal inflammation and enhancing mucosal epithelial function after regulating the structure and function of TJs.