Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 125416, 12 pages
http://dx.doi.org/10.1155/2013/125416
Research Article

Hypoglycemic Activity and Antioxidative Stress of Extracts and Corymbiferin from Swertia bimaculata In Vitro and In Vivo

1Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji School of Pharmaceutical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China
2Hubei Key Laboratory of Natural Products Research and Development, College of Chemistry and Life Science, China Three Gorges University, Yichang 443002, China

Received 5 July 2013; Revised 25 August 2013; Accepted 3 September 2013

Academic Editor: Chong-Zhi Wang

Copyright © 2013 Zhaoxia Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. M. Ramkumar, P. Vanitha, C. Uma, N. Suganya, E. Bhakkiyalakshmi, and J. Sujatha, “Antidiabetic activity of alcoholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats,” Food and Chemical Toxicology, vol. 49, no. 12, pp. 3390–3394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Rains and S. K. Jain, “Oxidative stress, insulin signaling, and diabetes,” Free Radical Biology and Medicine, vol. 50, no. 5, pp. 567–575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Piconi, L. Quagliaro, and A. Ceriello, “Oxidative stress in diabetes,” Clinical Chemistry and Laboratory Medicine, vol. 41, no. 9, pp. 1144–1149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Wright Jr., J. L. Scism-Bacon, and L. C. Glass, “Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia,” International Journal of Clinical Practice, vol. 60, no. 3, pp. 308–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Ceriello, L. Quagliaro, B. Catone et al., “Role of hyperglycemia in nitrotyrosine postprandial generation,” Diabetes Care, vol. 25, no. 8, pp. 1439–1443, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes, vol. 40, no. 4, pp. 405–412, 1991. View at Google Scholar · View at Scopus
  7. S. K. Jain, “Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells,” Journal of Biological Chemistry, vol. 264, no. 35, pp. 21340–21345, 1989. View at Google Scholar · View at Scopus
  8. J. V. Hunt, C. C. T. Smith, and S. P. Wolff, “Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose,” Diabetes, vol. 39, no. 11, pp. 1420–1424, 1990. View at Google Scholar · View at Scopus
  9. R. J. Marles and N. R. Farnsworth, “Antidiabetic plants and their active constituents,” Phytomedicine, vol. 2, no. 2, pp. 137–189, 1995. View at Google Scholar · View at Scopus
  10. A. Umar, Q. U. Ahmed, B. Y. Muhammad, B. B. S. Dogarai, and S. Z. B. M. Soad, “Anti-hyperglycemic activity of the leaves of Tetracera scandens Linn. Merr. (Dilleniaceae) in alloxan induced diabetic rats,” Journal of Ethnopharmacology, vol. 131, no. 1, pp. 140–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Matthaei, M. Stumvoll, M. Kellerer, and H.-U. Häring, “Pathophysiology and pharmacological treatment of insulin resistance,” Endocrine Reviews, vol. 21, no. 6, pp. 585–618, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Kameswara Rao and C. Appa Rao, “Hypoglycemic and antihyperglycemic activity of Syzygium alternifolium (Wt.) Walp. seed extracts in normal and diabetic rats,” Phytomedicine, vol. 8, no. 2, pp. 88–93, 2001. View at Google Scholar · View at Scopus
  13. J. K. Grover, S. Yadav, and V. Vats, “Medicinal plants of India with anti-diabetic potential,” Journal of Ethnopharmacology, vol. 81, no. 1, pp. 81–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Phoboo, M. D. S. Pinto, A. C. L. Barbosa et al., “Phenolic-linked biochemical rationale for the anti-diabetic properties of Swertia chirayita (Roxb. ex Flem.) Karst,” Phytotherapy Research, vol. 27, no. 2, pp. 227–235, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Basnet, S. Kadota, T. Namba, and M. Shimizu, “The hypoglycaemic activity of Swertia japonica extract in streptozotocin induced hyperglycaemic rats,” Phytotherapy Research, vol. 8, no. 1, pp. 55–57, 1994. View at Google Scholar · View at Scopus
  16. M. B. Bajpai, R. K. Asthana, N. K. Sharma, S. K. Chatterjee, and S. K. Mukherjee, “Hypoglycemic effect of swerchirin from the hexane fraction of Swertia chirayita,” Planta Medica, vol. 57, no. 2, pp. 102–104, 1991. View at Google Scholar · View at Scopus
  17. M. B. Bajpai, R. K. Asthana, and N. K. Sharma, “Swerchirin induced blood sugar lowering of streptozotocin treated hyperglycemic rats,” Indian Journal of Experimental Biology, vol. 29, no. 7, pp. 674–675, 1991. View at Google Scholar · View at Scopus
  18. L.-Y. Tian, X. Bai, X.-H. Chen, J.-B. Fang, S.-H. Liu, and J.-C. Chen, “Anti-diabetic effect of methylswertianin and bellidifolin from Swertia punicea Hemsl. and its potential mechanism,” Phytomedicine, vol. 17, no. 7, pp. 533–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Basnet, S. Kadota, M. Shimizu, Y. Takata, M. Kobayashi, and T. Namba, “Bellidifolin stimulates glucose uptake in rat 1 fibroblasts and ameliorates hyperglycemia in streptozotocin (STZ)-induced diabetic rats,” Planta Medica, vol. 61, no. 5, pp. 402–405, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. Jiangsu New Medical College, Encyclopedia of Traditional Chinese Medicine, Science and Technology Press, Shanghai, China, 1977.
  21. The Institute of Medicinal Plant Development, Chinese Materia Medica, People’s Medical Publishing House, Beijing, China, 1988.
  22. R. R. Wen, X. H. Dong, Y. X. Duan et al., “Studies on the chemical constituents of Swertia bimaculata,” Journal of Yunnan University of Nationalities, vol. 19, no. 2, pp. 93–96, 2010. View at Google Scholar
  23. S. Ghosal, P. V. Sharma, and R. K. Chaudhuri, “Xanthones of Swertia bimaculata,” Phytochemistry, vol. 14, no. 12, pp. 2671–2675, 1975. View at Google Scholar · View at Scopus
  24. S. Ghosal, P. V. Sharma, and D. K. Jaiswal, “Chemical constituents of gentianaceae XXIII: tetraoxygenated and pentaoxygenated xanthones and xanthone O-glucosides of Swertia angustifolia Buch.-Ham,” Journal of Pharmaceutical Sciences, vol. 67, no. 1, pp. 55–60, 1978. View at Google Scholar · View at Scopus
  25. M. H. Benn, N. I. Joyce, S. D. Lorimer, N. B. Perry, J. W. van Klink, and Q. Wu, “Xanthones and bisxanthones in five New Zealand and subantarctic Gentianella species,” Biochemical Systematics and Ecology, vol. 37, no. 4, pp. 531–534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Peng, J. Ma, J. Chao et al., “Beneficial effects of cinnamon proanthocyanidins on the formation of specific advanced glycation endproducts and methylglyoxal-induced impairment on glucose consumption,” Journal of Agricultural and Food Chemistry, vol. 58, no. 11, pp. 6692–6696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. A. Blake and N. V. McLean, “A colorimetric assay for the measurement of D-glucose consumption by cultured cells,” Analytical Biochemistry, vol. 177, no. 1, pp. 156–160, 1989. View at Google Scholar · View at Scopus
  28. V. P. Veerapur, K. R. Prabhakar, B. S. Thippeswamy, P. Bansal, K. K. Srinivasan, and M. K. Unnikrishnan, “Antidiabetic effect of Ficus racemosa Linn. stem bark in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats: a mechanistic study,” Food Chemistry, vol. 132, no. 1, pp. 186–193, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979. View at Google Scholar · View at Scopus
  31. Ministry of Health of the People’s Republic of China, Technical standards for testing and assessment of health food, China, 2003.
  32. M. Zhang, X.-Y. Lv, J. Li, Z.-G. Xu, and L. Chen, “The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model,” Experimental Diabetes Research, vol. 2008, Article ID 704045, 9 pages, 2008. View at Google Scholar · View at Scopus
  33. K. Srinivasan, B. Viswanad, L. Asrat, C. L. Kaul, and P. Ramarao, “Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening,” Pharmacological Research, vol. 52, no. 4, pp. 313–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Reed, K. Meszaros, L. J. Entes et al., “A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat,” Metabolism, vol. 49, no. 11, pp. 1390–1394, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. M. V. Vijayakumar, S. Singh, R. R. Chhipa, and M. K. Bhat, “The hypoglycaemic activity of fenugreek seed extract is mediated through the stimulation of an insulin signalling pathway,” British Journal of Pharmacology, vol. 146, no. 1, pp. 41–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Schultze, B. A. Hemmings, M. Niessen, and O. Tschopp, “PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis,” Expert Reviews in Molecular Medicine, vol. 14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. S. I. Taylor, “Deconstructing type 2 diabetes,” Cell, vol. 97, no. 1, pp. 9–12, 1999. View at Google Scholar · View at Scopus
  38. A. Barthel and D. Schmoll, “Novel concepts in insulin regulation of hepatic gluconeogenesis,” The American Journal of Physiology, vol. 285, no. 4, pp. E685–E692, 2003. View at Google Scholar · View at Scopus
  39. A. B. Singh, T. Khaliq, J. P. Chaturvedi, T. Narender, and A. K. Srivastava, “Anti-diabetic and anti-oxidative effects of 4-hydroxypipecolic acid in C57BL/KsJ-db/db mice,” Human and Experimental Toxicology, vol. 31, no. 1, pp. 57–65, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. C. R. Lima, C. F. B. Vasconcelos, J. H. Costa-Silva et al., “Anti-diabetic activity of extract from Persea americana Mill. leaf via the activation of protein kinase B (PKB/Akt) in streptozotocin-induced diabetic rats,” Journal of Ethnopharmacology, vol. 141, no. 1, pp. 517–525, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. D. W. Morel and G. M. Chisolm, “Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity,” Journal of Lipid Research, vol. 30, no. 12, pp. 1827–1834, 1989. View at Google Scholar · View at Scopus
  42. E. R. Briones, S. J. T. Mao, and P. J. Palumbo, “Analysis of plasma lipids and apolipoproteins in insulin-dependent and noninsulin-dependent diabetics,” Metabolism, vol. 33, no. 1, pp. 42–49, 1984. View at Google Scholar · View at Scopus
  43. R. K. Gupta, D. Kumar, A. K. Chaudhary, M. Maithani, and R. Singh, “Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin- induced diabetes in mice,” Journal of Ethnopharmacology, vol. 139, no. 3, pp. 801–806, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. P. D. Mayne, Clinical Chemistry in Diagnosis and Treatment, Hodder Arnold Publication, London, UK, 1996.
  45. K. Arvind, R. Pradeepa, R. Deepa, and V. Mohan, “Diabetes & coronary artery disease,” Indian Journal of Medical Research, vol. 116, pp. 163–176, 2002. View at Google Scholar · View at Scopus
  46. A. Ceriello, “Postprandial hyperglycemia and diabetes complications: is it time to treat?” Diabetes, vol. 54, no. 1, pp. 1–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Bajaj and A. Khan, “Antioxidants and diabetes,” Indian Journal of Endocrinology and Metabolism, vol. 16, no. 2, pp. 267–271, 2012. View at Google Scholar
  48. J. M. C. Gutteridge, “Lipid peroxidation and antioxidants as biomarkers of tissue damage,” Clinical Chemistry, vol. 41, no. 12, pp. 1819–1828, 1995. View at Google Scholar · View at Scopus
  49. A. A. Abolfathi, D. Mohajeri, A. Rezaie, and M. Nazeri, “Protective effects of green tea extract against hepatic tissue injury in streptozotocin-induced diabetic rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 740671, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Bloch-Damti and N. Bashan, “Proposed mechanisms for the induction of insulin resistance by oxidative stress,” Antioxidants and Redox Signaling, vol. 7, no. 11-12, pp. 1553–1567, 2005. View at Publisher · View at Google Scholar · View at Scopus