Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 154606, 9 pages
http://dx.doi.org/10.1155/2013/154606
Research Article

Phytochemicals and Antioxidant Capacity from Nypa fruticans Wurmb. Fruit

1Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
2Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
4Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
5Institute of Agro-food Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
6Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
7MUDA Agricultural Development Authority (MADA), Alor Setar 05990, Kedah, Malaysia

Received 9 October 2012; Revised 20 February 2013; Accepted 18 March 2013

Academic Editor: Weena Jiratchariyakul

Copyright © 2013 Nagendra Prasad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Namiki, “Antioxidants/antimutagens in food,” Critical Reviews in Food Science and Nutrition, vol. 29, no. 4, pp. 273–300, 1990. View at Google Scholar · View at Scopus
  2. Z. Laura, C. Caliceti, F. V. D. Sega et al., “Dietary phenolic acids act as effective antioxidants in membrane models and in cultured cells, exhibiting proapoptotic effects in leukaemia cells,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 839298, 2012. View at Google Scholar
  3. A. Gordon, A. P. G. Cruz, L. M. C. Cabral et al., “Chemical characterization and evaluation of antioxidant properties of Acai fruits (Euterpe oleraceae Mart.) during ripening,” Food Chemistry, vol. 133, pp. 256–263, 2012. View at Google Scholar
  4. T. N. Manojlovic, P. J. Vasiljevic, P. Z. Maskovic, M. Juskovic, and G. Bogdanovic-Dusanovic, “Chemical composition, antioxidant, and antimicrobial activities of Lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae),” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 452431, 8 pages, 2012. View at Google Scholar
  5. K. N. Prasad, K. W. Kong, N. S. Ramannan, A. Azrina, and I. Amin, “Selection of experimental domain using two level factorial design to determine extract yield, antioxidant capacity, phenolics and flavonoids from Mangifera pajang Kosterm,” Separation Science and Technology, vol. 47, no. 16, pp. 2417–2423, 2012. View at Publisher · View at Google Scholar
  6. K. N. Prasad, L. Y. Chew, H. E. Khoo, B. Yang, A. Azlan, and A. Ismail, “Carotenoids and antioxidant capacities from Canarium odontophyllum Miq. fruit,” Food Chemistry, vol. 124, no. 4, pp. 1549–1555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. E. H. K. Ikram, K. H. Eng, A. M. M. Jalil et al., “Antioxidant capacity and total phenolic content of Malaysian underutilized fruits,” Journal of Food Composition and Analysis, vol. 22, no. 5, pp. 388–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Joshi, U. Kanagaratnam, and D. Adhuri, “Nypa fruticans—useful but forgotten in mangrove reforestration programs?” 2006, http://www.worldagroforestrycentre.org/Sea/W-New/datas/Aceh30Nov06/7.%20Nypa%20fruticans-useful%20but%20forgotten%20in%20mangrove.pdf.
  9. P. Tamunaidu and S. Saka, “Chemical characterization of various parts of nipa palm (Nypa fruticans),” Industrial Crops and Products, vol. 34, pp. 1423–1428, 2011. View at Google Scholar
  10. S. Y. Tang, S. Hara, L. Melling, K. J. Goh, and Y. Hashidoko, “Burkholderia vietnamiensis isolated from root tissues of nipa palm (Nypa fruticans) in Sarawak, Malaysia, proved to be its major endophytic nitrogen-fixing bacterium,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 9, pp. 1972–1975, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. V. N. Osabor, G. E. Egbung, and P. C. Okafor, “Chemical profile of Nypa fruiticans from Cross River Estuary, south eastern Nigeria,” Pakistan Journal of Nutrition, vol. 7, no. 1, pp. 146–150, 2008. View at Google Scholar · View at Scopus
  12. M. Rahmatullah, S. M. I. Sadeak, S. C. Bachar et al., “Brine Shrimp Toxicity Study of different Bangladeshi Medicinal Plants,” Advances in Natural and Applied Sciences, vol. 4, pp. 163–173, 2010. View at Google Scholar
  13. W. M. Bandaranayake, “Traditional and medicinal uses of mangroves,” Mangroves and Salt Marshes, vol. 2, no. 3, pp. 133–148, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Reza, V. M. Haq, A. K. Das, S. Rahman, R. Jahan, and M. Rahmatullah, “Aanti-hyperglycemic and antinociceptive activity of methanol leaf and stem extract of Nypa fruticans Wurmb,” Pakistan Journal of Pharmaceutical Science, vol. 24, pp. 485–488, 2011. View at Google Scholar
  15. V. A. Singleton and J. A. Rossi, “Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents,” Journal of Enology and Vitriculture, vol. 16, pp. 144–158, 1965. View at Google Scholar
  16. H. Liu, N. Qiu, H. Ding, and R. Yao, “Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses,” Food Research International, vol. 41, no. 4, pp. 363–370, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, no. 9-10, pp. 1231–1237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, “Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products,” Journal of Agricultural and Food Chemistry, vol. 46, no. 10, pp. 4113–4117, 1998. View at Google Scholar · View at Scopus
  19. P. Prieto, M. Pineda, and M. Aguilar, “Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E,” Analytical Biochemistry, vol. 269, no. 2, pp. 337–341, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. K. W. Kong, S. M. Junit, N. Aminudin, I. Amin, and A. A. Azlina, “Antioxidant activities and polyphenolics from the shoots of Barringtonia racemosa (L.) Spreng in a polar to apolar medium system,” Food Chemistry, vol. 134, pp. 324–332, 2012. View at Google Scholar
  21. L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance,” Nutrition Reviews, vol. 56, no. 11, pp. 317–333, 1987. View at Google Scholar · View at Scopus
  22. D. Huang, O. U. Boxin, and R. L. Prior, “The chemistry behind antioxidant capacity assays,” Journal of Agricultural and Food Chemistry, vol. 53, no. 6, pp. 1841–1856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Pellegrini, M. Serafini, B. Colombi et al., “Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays,” Journal of Nutrition, vol. 133, no. 9, pp. 2812–2819, 2003. View at Google Scholar · View at Scopus
  24. A. Gordon, A. P. G. Cruz, L. M. C. Cabral et al., “Chemical characterization and evaluation of antioxidant properties of Acai fruits (Euterpe oleraceae Mart.) during ripening,” Food Chemistry, vol. 133, pp. 256–263, 2012. View at Google Scholar
  25. M. G. Herrera-Hernández, F. Guevara-Lara, R. Reynoso-Camacho, and S. H. Guzmán-Maldonado, “Effects of maturity stage and storage on cactus berry (Myrtillocactus geometrizans) phenolics, vitamin C, betalains and their antioxidant properties,” Food Chemistry, vol. 129, pp. 1744–1750, 2011. View at Google Scholar
  26. M. S. Blois, “Antioxidant determinations by the use of a stable free radical,” Nature, vol. 181, no. 4617, pp. 1199–1200, 1958. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Singh and P. S. Rajini, “Free radical scavenging activity of an aqueous extract of potato peel,” Food Chemistry, vol. 85, no. 4, pp. 611–616, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. N. I. Krinsky, “Antioxidant functions of carotenoids,” Free Radical Biology and Medicine, vol. 7, no. 6, pp. 617–635, 1989. View at Publisher · View at Google Scholar · View at Scopus
  29. G. K. Jayaprakasha, B. Girennavar, and B. S. Patil, “Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems,” Bioresource Technology, vol. 99, no. 10, pp. 4484–4494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Monde, M. A. Carbonneau, F. Michel et al., “Potential health implication of in vitro human low-density lipoprotein-vitamin E oxidation modulation by polyphenols derived from cote d’Ivoire’s oil palm species,” Journal of Agriculture and Food Chemistry, vol. 59, pp. 9166–9171, 2011. View at Google Scholar
  31. G. Da Silva Campelo Borges, F. Gracieli Kunradi Vieira, C. Copetti et al., “Chemical characterization, bioactive compounds, and antioxidant capacity of jussara (Euterpe edulis) fruit from the Atlantic Forest in southern Brazil,” Food Research International, vol. 44, no. 7, pp. 2128–2133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Gruz, F. A. Ayaz, H. Torun, and M. Strnad, “Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening,” Food Chemistry, vol. 124, no. 1, pp. 271–277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Menichini, M. R. Loizzo, M. Bonesi et al., “Phytochemical profile, antioxidant, anti-inflammatory and hypoglycemic potential of hydroalcoholic extracts from Citrus medica L. cv Diamante flowers, leaves and fruits at two maturity stages,” Food and Chemical Toxicology, vol. 49, no. 7, pp. 1549–1555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Ismail, K. N. Prasad, L. Y. Chew, H. E. Khoo, K. W. Kong, and A. Azlan, “Antioxidant capacities of peel, pulp, and seed fractions of canarium odontophyllum Miq. fruit,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 871379, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Castillo, O. Benavente, and J. A. Del Río, “Naringin and neohesperidin levels during development of leaves, flower buds, and fruits of citrus aurantium,” Plant Physiology, vol. 99, no. 1, pp. 67–73, 1992. View at Google Scholar · View at Scopus