Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 172537, 13 pages
http://dx.doi.org/10.1155/2013/172537
Research Article

Populus balsamifera Extract and Its Active Component Salicortin Reduce Obesity and Attenuate Insulin Resistance in a Diet-Induced Obese Mouse Model

1Canadian Institutes of Health Research (CIHR) Team in Aboriginal Antidiabetic Medicines, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC, Canada H3C 3J7
2Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC, Canada H3C 3J7
3Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada G1V 0A6
4Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada H1W 4A4
5Department of Biology and Center for Research in Biopharmaceuticals and Biotechnology, University of Ottawa, Ottawa, ON, Canada K1N 6N5

Received 13 February 2013; Accepted 8 April 2013

Academic Editor: Ravirajsinh N. Jadeja

Copyright © 2013 Despina Harbilas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Robinson and X. Zhang, The World Medicines Situation 2011, Traditional Medicines: Global Situation, Issues and Challenges, World Health Organization, Geneva, Switzerland, 2011.
  2. H. Wallberg-Henriksson and J. R. Zierath, “GLUT4: a key player regulating glucose homeostasis? Insights from transgenic and knockout mice (review),” Molecular Membrane Biology, vol. 18, no. 3, pp. 205–211, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. R. Saltiel and C. R. Kahn, “Insulin signalling and the regulation of glucose and lipid metabolism,” Nature, vol. 414, no. 6865, pp. 799–806, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. E. J. Kurth-Kraczek, M. F. Hirshman, L. J. Goodyear, and W. W. Winder, “5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle,” Diabetes, vol. 48, no. 8, pp. 1667–1671, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Bouskila, M. F. Hirshman, J. Jensen, L. J. Goodyear, and K. Sakamoto, “Insulin promotes glycogen synthesis in the absence of GSK3 phosphorylation in skeletal muscle,” American Journal of Physiology, vol. 294, no. 1, pp. E28–E35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. F. Petersen, G. W. Cline, D. P. Gerard, I. Magnusson, D. L. Rothman, and G. I. Shulman, “Contribution of net hepatic glycogen synthesis to disposal of an oral glucose load in humans,” Metabolism, vol. 50, no. 5, pp. 598–601, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. T. Hwang, M. S. Lee, H. J. Kim et al., “Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-γ signal pathways,” Phytotherapy Research, vol. 23, no. 2, pp. 262–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Kimura, S. Mora, S. Shigematsu, J. E. Pessin, and A. R. Saltiel, “The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1,” The Journal of Biological Chemistry, vol. 277, no. 33, pp. 30153–30158, 2002. View at Google Scholar · View at Scopus
  9. R. Augustin, “The protein family of glucose transport facilitators: It's not only about glucose after all,” IUBMB Life, vol. 62, no. 5, pp. 315–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Thorens and M. Mueckler, “Glucose transporters in the 21st century,” American Journal of Physiology, vol. 298, no. 2, pp. E141–E145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. G. D. Fryer, A. Parbu-Patel, and D. Carling, “The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways,” The Journal of Biological Chemistry, vol. 277, no. 28, pp. 25226–25232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. D. G. Hardie, S. A. Hawley, and J. W. Scott, “AMP-activated protein kinase—development of the energy sensor concept,” Journal of Physiology, vol. 574, no. 1, pp. 7–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. C. Nordlie, J. D. Foster, and A. J. Lange, “Regulation of glucose production by the liver,” Annual Review of Nutrition, vol. 19, pp. 379–406, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Al-Daghri, W. A. Bartlett, A. F. Jones, and S. Kumar, “Role of leptin in glucose metabolism in type 2 diabetes,” Diabetes, Obesity and Metabolism, vol. 4, no. 3, pp. 147–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. K. W. Williams, M. M. Scott, and J. K. Elmquist, “From observation to experimentation: leptin action in the mediobasal hypothalamus,” American Journal of Clinical Nutrition, vol. 89, no. 3, pp. 985S–990S, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. J. Díez and P. Iglesias, “The role of the novel adipocyte-derived hormone adiponectin in human disease,” European Journal of Endocrinology, vol. 148, no. 3, pp. 293–300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Nedvídková, K. Smitka, V. Kopský, and V. Hainer, “Adiponectin, an adipocyte-derived protein,” Physiological Research, vol. 54, no. 2, pp. 133–140, 2005. View at Google Scholar · View at Scopus
  18. F. Vasseur, F. Leprêtre, C. Lacquemant, and P. Froguel, “The genetics of adiponectin,” Current Diabetes Reports, vol. 3, no. 2, pp. 151–158, 2003. View at Google Scholar · View at Scopus
  19. N. Rasouli and P. A. Kern, “Adipocytokines and the metabolic complications of obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. s64–s73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. V. Considine, M. K. Sinha, M. L. Heiman et al., “Serum immunoreactive-leptin concentrations in normal-weight and obese humans,” The New England Journal of Medicine, vol. 334, no. 5, pp. 292–295, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Kumar, Obesity and Diabetes, John Wiley & Sons, 2009.
  22. G. I. Shulman, “Cellular mechanisms of insulin resistance,” The Journal of Clinical Investigation, vol. 106, no. 2, pp. 171–176, 2000. View at Google Scholar · View at Scopus
  23. S. R. Farmer, “Regulation of PPARgamma activity during adipogenesis,” International Journal of Obesity, vol. 29, supplement 1, pp. S13–S16, 2005. View at Google Scholar
  24. G. Endemann, L. W. Stanton, K. S. Madden, C. M. Bryant, R. T. White, and A. A. Protter, “CD36 is a receptor for oxidized low density lipoprotein,” The Journal of Biological Chemistry, vol. 268, no. 16, pp. 11811–11816, 1993. View at Google Scholar · View at Scopus
  25. A. C. Nicholson, S. Frieda, A. Pearce, and R. L. Silverstein, “Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 2, pp. 269–275, 1995. View at Google Scholar · View at Scopus
  26. C. A. Baxa, R. S. Sha, M. K. Buelt et al., “Human adipocyte lipid-binding protein: purification of the protein and cloning of its complementary DNA,” Biochemistry, vol. 28, no. 22, pp. 8683–8690, 1989. View at Google Scholar · View at Scopus
  27. M. C. Arkan, A. L. Hevener, F. R. Greten et al., “IKK-β links inflammation to obesity-induced insulin resistance,” Nature Medicine, vol. 11, no. 2, pp. 191–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Porstmann, B. Griffiths, Y. L. Chung et al., “PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP,” Oncogene, vol. 24, no. 43, pp. 6465–6481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Ntambi, M. Miyazaki, J. P. Stoehr et al., “Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 17, pp. 11482–11486, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Chen, R. Bezzina, E. Hinch et al., “Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet,” Nutrition Research, vol. 29, no. 11, pp. 784–793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. N. C. Chavez-Tapia, N. Mendez-Sanchez, and M. Uribe, “Role of nonalcoholic fatty liver disease in hepatocellular carcinoma,” Annals of Hepatology, vol. 8, supplement 1, pp. S34–S39, 2009. View at Google Scholar · View at Scopus
  32. F. Bost, M. Aouadi, L. Caron, and B. Binétruy, “The role of MAPKs in adipocyte differentiation and obesity,” Biochimie, vol. 87, no. 1, pp. 51–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Donzelli, C. Lucchini, E. Ballarini et al., “ERK1 and ERK2 are involved in recruitment and maturation of human mesenchymal stem cells induced to adipogenic differentiation,” Journal of Molecular Cell Biology, vol. 3, no. 2, pp. 123–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. WHO, Obesity Prevalence in the Aboriginal Canadian Population, 2004.
  35. WHO, Obesity Prevalence in the Canadian Population, 2004.
  36. D. Dannenbaum and E. Kuzmina, “J. T. clinical management of diabetes in Eeyou Istchee—2009,” in Internal Report For Healthcare Workers, Bay rBoHaSSoJ, Ed., Public Health Report Series 3 on Diabetes, Quebec, Canada, 2010. View at Google Scholar
  37. D. Harbilas, L. C. Martineau, C. S. Harris et al., “Evaluation of the antidiabetic potential of selected medicinal plant extracts from the Canadian boreal forest used to treat symptoms of diabetes: part II,” Canadian Journal of Physiology and Pharmacology, vol. 87, no. 6, pp. 479–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. L. C. Martineau, J. Hervé, A. Muhamad et al., “Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part I: sites and mechanisms of action,” Planta Medica, vol. 76, no. 13, pp. 1439–1446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. L. C. Martineau, A. Muhammad, A. Saleem et al., “Anti-adipogenic activities of alnus incana and populus balsamifera bark extracts, part II: bioassay-guided identification of actives salicortin and oregonin,” Planta Medica, vol. 76, no. 14, pp. 1519–1524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. K. Kim, Y. J. Kim, J. J. Fillmore et al., “Prevention of fat-induced insulin resistance by salicylate,” The Journal of Clinical Investigation, vol. 108, no. 3, pp. 437–446, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Yuan, N. Konstantopoulos, J. Lee et al., “Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ,” Science, vol. 293, no. 5535, pp. 1673–1677, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Zheng, S. J. Howell, D. A. Hatala, K. Huang, and T. S. Kern, “Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy,” Diabetes, vol. 56, pp. 337–345, 2007. View at Google Scholar
  43. B. Subramanian, A. Nakeff, K. Tenney, P. Crews, L. Gunatilaka, and F. Valeriote, “A new paradigm for the development of anticancer agents from natural products,” Journal of Experimental Therapeutics and Oncology, vol. 5, no. 3, pp. 195–204, 2006. View at Google Scholar · View at Scopus
  44. D. Harbilas, A. Brault, D. Vallerand et al., “Populus balsamifera L. (Salicaceae) mitigates the development of obesity and improves insulin sensitivity in a diet-induced obese mouse model,” Journal of Ethnopharmacology, vol. 141, pp. 1012–1020, 2012. View at Google Scholar
  45. R. Buettner, J. Schölmerich, and L. C. Bollheimer, “High-fat diets: modeling the metabolic disorders of human obesity in rodents,” Obesity, vol. 15, no. 4, pp. 798–808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Collins, T. L. Martin, R. S. Surwit, and J. Robidoux, “Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics,” Physiology and Behavior, vol. 81, no. 2, pp. 243–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. M. L. Peyot, E. Pepin, J. Lamontagne et al., “β-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced β-cell mass,” Diabetes, vol. 59, no. 9, pp. 2178–2187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Folch, M. Lees, and G. H. Sloane Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Google Scholar · View at Scopus
  49. C. D. Egan, “Addressing use of herbal medicine in the primary care setting,” Journal of the American Academy of Nurse Practitioners, vol. 14, no. 4, pp. 166–171, 2002. View at Google Scholar · View at Scopus
  50. C. Leduc, J. Coonishish, P. Haddad, and A. Cuerrier, “Plants used by the Cree Nation of Eeyou Istchee (Quebec, Canada) for the treatment of diabetes: a novel approach in quantitative ethnobotany,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 55–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. M. H. Fraser, A. Cuerrier, P. S. Haddad, J. T. Arnason, P. L. Owen, and T. Johns, “Medicinal plants of cree communities (Québec, Canada): antioxidant activity of plants used to treat type 2 diabetes symptoms,” Canadian Journal of Physiology and Pharmacology, vol. 85, no. 11, pp. 1200–1214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. J. M. Ye, P. J. Doyle, M. A. Iglesias, D. G. Watson, G. J. Cooney, and E. W. Kraegen, “Peroxisome proliferator-activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats. Comparison with PPAR-γ activation,” Diabetes, vol. 50, no. 2, pp. 411–417, 2001. View at Google Scholar · View at Scopus
  53. J. Girard and M. Lafontan, “Impact of visceral adipose tissue on liver metabolism and insulin resistance. Part II: visceral adipose tissue production and liver metabolism,” Diabetes and Metabolism, vol. 34, no. 5, pp. 439–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. den Boer, P. J. Voshol, F. Kuipers, L. M. Havekes, and J. A. Romijn, “Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 4, pp. 644–649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Nachar, A. Saleem, D. Vallerand et al., “Beneficial effects in the liver of antidiabetic plants used in traditional medicine by the Cree of Bay James in Canada,” in Proceedings of the 10th Annual Oxford International Conference on the Science of Botanicals, Planta Medica, Mississipi, Miss, USA, 2011.
  56. H. Tilg and A. R. Moschen, “Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis,” Hepatology, vol. 52, no. 5, pp. 1836–1846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Luther, F. Driessler, M. Megges et al., “Elevated Fra-1 expression causes severe lipodystrophy,” Journal of Cell Science, vol. 124, no. 9, pp. 1465–1476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. M. C. Stanton, S. C. Chen, J. V. Jackson et al., “Inflammatory signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice,” Journal of Inflammation, vol. 8, article 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Walshe-Roussel, A. Saleem, C. Cieniak et al., “Phytochemical profiling and immunomodulatory activity of water and ethanol extracts from Cree of Eeyou Istchee anti-diabetic botanicals,” in Joint Meeting with American Society of Pharmacognosy-Phytochemical Society of North America (ASP-PSNA '10), Florida, Fla, USA, 2010.
  60. Y. Zick, “Insulin resistance: a phosphorylation-based uncoupling of insulin signaling,” Trends in Cell Biology, vol. 11, no. 11, pp. 437–441, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. J. T. Arnason, R. J. Hebda, and T. Johns, “Use of plants for food and medicine by native peoples of Eastern Canada,” Canadian Journal of Botany, vol. 59, pp. 2189–2325, 1981. View at Google Scholar
  62. R. J. Marles, C. Clavelle, L. Monteleone, N. Tays, and D. Burns, Aboriginal Plant Use in Canada's Northwest Boreal Forest, UBC Press, Vancouver, Canada, 2000.
  63. A. L. Leighton, Wild Plant Use By the Woods Cree (Nihithawak) of East-Central Saskatchewan, National Museums of Canada, Ottawa, Canada, 1985.
  64. T. Efferth and E. Koch, “Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy,” Current Drug Targets, vol. 12, no. 1, pp. 122–132, 2011. View at Publisher · View at Google Scholar · View at Scopus