Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 213739, 9 pages
http://dx.doi.org/10.1155/2013/213739
Research Article

Metabonomic Study on the Antidepressant-Like Effects of Banxia Houpu Decoction and Its Action Mechanism

1Department of Pharmacology for Chinese Materia Medica, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
2Discipline of Chinese and Western Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China

Received 6 June 2013; Revised 6 August 2013; Accepted 11 August 2013

Academic Editor: James William Daily III

Copyright © 2013 Zhanqiang Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. De Bodinat, B. Guardiola-Lemaitre, E. Mocaër, P. Renard, C. Muñoz, and M. J. Millan, “Agomelatine, the first melatonergic antidepressant: discovery, characterization and development,” Nature Reviews Drug Discovery, vol. 9, no. 8, pp. 628–642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. C. Kessler, W. T. Chiu, O. Demler, T. C. Wai, and E. E. Walters, “Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication,” Archives of General Psychiatry, vol. 62, no. 6, pp. 617–627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. P. S. Wang, G. Simon, and R. C. Kessler, “The economic burden of depression and the cost-effectiveness of treatment,” International Journal of Methods in Psychiatric Research, vol. 12, no. 1, pp. 22–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. C. B. Nemeroff, “The burden of severe depression: a review of diagnostic challenges and treatment alternatives,” Journal of Psychiatric Research, vol. 41, no. 3–4, pp. 189–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. H. Kennedy, “A review of antidepressant treatments today,” European Neuropsychopharmacology, vol. 16, no. 5, pp. S619–S623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Papp, P. Willner, and R. Muscat, “An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress,” Psychopharmacology, vol. 104, no. 2, pp. 255–259, 1991. View at Google Scholar · View at Scopus
  7. Z. Zhao, W. Wang, H. Guo, and D. Zhou, “Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats,” Behavioural Brain Research, vol. 194, no. 1, pp. 108–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Zheng, M. Yu, X. Lu et al., “Urinary metabonomic study on biochemical changes in chronic unpredictable mild stress model of depression,” Clinica Chimica Acta, vol. 411, no. 3–4, pp. 204–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Willner, “Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation,” Psychopharmacology, vol. 134, no. 4, pp. 319–329, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Ma, K. Bi, M. Zhang et al., “Toxicology effects of morning glory seed in rat: a metabonomic method for profiling of urine metabolic changes,” Journal of Ethnopharmacology, vol. 130, no. 1, pp. 134–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Ma, K. Bi, M. Zhang et al., “Metabonomic study of biochemical changes in the urine of morning glory seed treated rat,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 3, pp. 559–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. K. Nicholson, J. C. Lindon, and E. Holmes, “'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data,” Xenobiotica, vol. 29, no. 11, pp. 1181–1189, 1999. View at Google Scholar · View at Scopus
  13. J. L. Griffin and M. E. Bollard, “Metabonomics: its potential as a tool in toxicology for safety assessment and data integration,” Current Drug Metabolism, vol. 5, no. 5, pp. 389–398, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Chen, M. Su, L. Zhao et al., “Metabonomic study of aristolochic acid-induced nephrotoxicity in rats,” Journal of Proteome Research, vol. 5, no. 4, pp. 995–1002, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Yin, X. Zhao, Q. Li, J. Wang, J. Li, and G. Xu, “Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS),” Journal of Proteome Research, vol. 5, no. 9, pp. 2135–2143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. I. Ellis, W. B. Dunn, J. L. Griffin, J. W. Allwood, and R. Goodacre, “Metabolic fingerprinting as a diagnostic tool,” Pharmacogenomics, vol. 8, no. 9, pp. 1243–1266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Shanghai Science and Techonlogy Publishing Company, “State administration of traditional chinese medicine,” Zhonghuabencao, pp. 2213–2217, 1999. View at Google Scholar
  18. L. C. Zhang, “Clinical examples of ‘Banxia Houpu Decoction’,” Shanghai Journal of Traditional Chinese Medicine, vol. 37, pp. 19–20, 2003. View at Google Scholar
  19. L. Luo, J. Nong Wang, L. D. Kong, Q. G. Jiang, and R. X. Tan, “Antidepressant effects of “Banxia Houpu Decoction”, a traditional Chinese medicinal empirical formula,” Journal of Ethnopharmacology, vol. 73, no. 1-2, pp. 277–281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. L. R. Sun, H. C. Yan, X. Cao et al., “Duration and cycles of decocting process: how they relate to the contents of Paeoniflorin in decoctions from three paeonia lactiforia recipes,” Chinese Remedies & Clinic, vol. 8, no. 9, pp. 693–695, 2008. View at Google Scholar
  21. P. Willner, A. Towell, D. Sampson, S. Sophokleous, and R. Muscat, “Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant,” Psychopharmacology, vol. 93, no. 3, pp. 358–364, 1987. View at Google Scholar · View at Scopus
  22. R. D. Porsolt, A. Bertin, and M. Jalfre, “Behavioral despair in mice: a primary screening test for antidepressants,” Archives Internationales de Pharmacodynamie et de Therapie, vol. 229, no. 2, pp. 327–336, 1977. View at Google Scholar · View at Scopus
  23. D. Wang, S. C. An, and X. Zhang, “Prevention of chronic stress-induced depression-like behavior by inducible nitric oxide inhibitor,” Neuroscience Letters, vol. 433, no. 1, pp. 59–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Bekris, K. Antoniou, S. Daskas, and Z. Papadopoulou-Daifoti, “Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains,” Behavioural Brain Research, vol. 161, no. 1, pp. 45–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. American Psychiatric Association, DSMIV—Diagnostic and Statistical Manual of Psychiatric Disorders, American Psychiatric Association, Washington, DC, USA, 4th edition, 1994.
  26. C. Servière and P. Fabry, “Principal component analysis and blind source separation of modulated sources for electro-mechanical systems diagnostic,” Mechanical Systems and Signal Processing, vol. 19, no. 6, pp. 1293–1311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Liu, S. Zhang, X. Lu, S. Zheng, F. Li, and Z. Xiong, “Metabonomic study on the anti-osteoporosis effect of Rhizoma Drynariae and its action mechanism using ultra-performance liquid chromatography-tandem mass spectrometry,” Journal of Ethnopharmacology, vol. 139, no. 1, pp. 311–317, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. T. J. Montine, D. Milatovic, R. C. Gupta, T. Valyi-Nagy, J. D. Morrow, and R. M. Breyer, “Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent,” Journal of Neurochemistry, vol. 83, no. 2, pp. 463–470, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. J. Henry, Y. Huang, A. Wynne et al., “Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia,” Journal of Neuroinflammation, vol. 5, article 15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. R. J. Tynan, S. Naicker, M. Hinwood et al., “Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions,” Brain, Behavior, and Immunity, vol. 24, no. 7, pp. 1058–1068, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Ni, M. Su, J. Lin et al., “Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress,” FEBS Letters, vol. 582, no. 17, pp. 2627–2636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Sharma, E. T. McCarthy, D. S. Reddy et al., “8,9-Epoxyeicosatrienoic acid protects the glomerular filtration barrier,” Prostaglandins & Other Lipid Mediators, vol. 89, no. 1-2, pp. 43–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Serrettim, L. Mandellim, E. Lattuadam, and E. Smeraldi, “Depressive syndrome in major psychoses: a study on 1351 subjects,” , Psychiatry Research, vol. 127, no. 1, pp. 85–99, 2004. View at Google Scholar