Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 294789, 6 pages
http://dx.doi.org/10.1155/2013/294789
Research Article

Electroacupuncture Stimulation at CV12 Inhibits Gastric Motility via TRPV1 Receptor

1Key Laboratory of Integrated Acupuncture and Drugs Constructed by the Ministry of Education and Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210029, China
2Toho University, Tokyo 143-8540, Japan
3Nanjing Medical University, Nanjing 210029, China

Received 25 February 2013; Accepted 9 August 2013

Academic Editor: Jian Kong

Copyright © 2013 Zhi Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Zhao, H. Sha, Z. Y. Li, and C. S. Ren, “Electrical bioimpedance gastric motility measurement based on an electrical-mechanical composite mechanism,” World Journal of Gastroenterology, vol. 18, no. 25, pp. 3282–3287, 2012. View at Google Scholar
  2. N. J. Talley, “Functional gastrointestinal disorders as a public health problem,” Neurogastroenterology and Motility, vol. 20, 1, pp. 121–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Cash, S. Sullivan, and V. Barghout, “Total costs of IBS: employer and managed care perspective,” The American Journal of Managed Care, vol. 11, no. 1, pp. S7–16, 2005. View at Google Scholar · View at Scopus
  4. Y. Matsumoto, M. Ito, D. Kamino, S. Tanaka, K. Haruma, and K. Chayama, “Relation between histologic gastritis and gastric motility in Japanese patients with functional dyspepsia: evaluation by transabdominal ultrasonography,” Journal of Gastroenterology, vol. 43, no. 5, pp. 332–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Nahata, S. Muto, N. Oridate et al., “Impaired ghrelin signaling is associated with gastrointestinal dysmotility in rats with gastroesophageal reflux disease,” American Journal of Physiology Gastrointestinal and Liver Physiology, vol. 303, no. 1, pp. G42–G53, 2012. View at Google Scholar
  6. H. S. Hwang, K.-J. Han, Y. H. Ryu et al., “Protective effects of electroacupuncture on acetylsalicylic acid-induced acute gastritis in rats,” World Journal of Gastroenterology, vol. 15, no. 8, pp. 973–977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Noguchi, “Acupuncture regulates gut motility and secretion via nerve reflexes,” Autonomic Neuroscience, vol. 156, no. 1-2, pp. 15–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Y. Tian, Z. X. Bian, X. G. Hu, X. J. Zhang, L. Liu, and H. Zhang, “Electro-acupuncture attenuates stress-induced defecation in rats with chronic visceral hypersensitivity via serotonergic pathway,” Brain Research, vol. 1088, no. 1, pp. 101–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Witt, K. Meissner, D. Pach et al., “Stimulation of gastric slow waves with manual acupuncture at acupuncture points ST36 and PC6—a randomized single blind controlled trial,” Neurogastroenterology and Motility, vol. 24, no. 5, pp. 438–445, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. Y.-Q. Li, B. Zhu, P.-J. Rong, H. Ben, and Y.-H. Li, “Effective regularity in modulation on gastric motility induced by different acupoint stimulation,” World Journal of Gastroenterology, vol. 12, no. 47, pp. 7642–7648, 2006. View at Google Scholar · View at Scopus
  11. J. Yin and J. D. Z. Chen, “Gastrointestinal motility disorders and acupuncture,” Autonomic Neuroscience, vol. 157, no. 1-2, pp. 31–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Rahmati, “The transient receptor potential vanilloid receptor 1, TRPV1 (VR1) inhibits peristalsis in the mouse jejunum,” Archives of Iranian Medicine, vol. 15, no. 7, pp. 433–438, 2012. View at Google Scholar
  13. Z. Zhang, C. Wang, G. Gu et al., “The effects of electroacupuncture at the ST36 (Zusanli) acupoint on cancer pain and transient receptor potential vanilloid subfamily 1 expression in walker 256 tumor-bearing rats,” Anesthesia and Analgesia, vol. 114, no. 4, pp. 879–885, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Wang, H. Y. Yang, and G. S. Xu, “Acupuncture alleviates colorectal hypersensitivity and correlates with the regulatory mechanism of trpV1 and p-ERK,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 483123, 10 pages, 2012. View at Publisher · View at Google Scholar
  15. L. Manni, F. Florenzano, and L. Aloe, “Electroacupuncture counteracts the development of thermal hyperalgesia and the alteration of nerve growth factor and sensory neuromodulators induced by streptozotocin in adult rats,” Diabetologia, vol. 54, no. 7, pp. 1900–1908, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Yu, Y. B. Xia, M. X. Lu, J. Lin, W. J. Yu, and B. Xu, “Influence of electroacupuncture stimulation of tianshu (ST25), quchi (LI11) and shangjuxu (ST37) and their pairs on gastric motility in the rat,” Acupuncture Research, vol. 38, no. 1, pp. 40–47, 2013. View at Google Scholar
  17. X. Y. Wang, H. Shi, H. Y. Shang et al., “Are primo vessels (PVs) on the surface of gastrointestine involved in regulation of gastric motility induced by stimulating acupoints ST36 or CV12?” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 787683, 8 pages, 2012. View at Publisher · View at Google Scholar
  18. F. Kagitani, S. Uchida, and H. Hotta, “Afferent nerve fibers and acupuncture,” Autonomic Neuroscience, vol. 157, no. 1-2, pp. 2–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Sato, Y. Sato, A. Suzuki, and S. Uchida, “Neural mechanisms of the reflex inhibition and excitation of gastric motility elicited by acupuncture-like stimulation in anesthetized rats,” Neuroscience Research, vol. 18, no. 1, pp. 53–62, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-Q. Li, B. Zhu, P.-J. Rong, H. Ben, and Y.-H. Li, “Neural mechanism of acupuncture-modulated gastric motility,” World Journal of Gastroenterology, vol. 13, no. 5, pp. 709–716, 2007. View at Google Scholar · View at Scopus
  21. H. Ohsawa, S. Yamaguchi, H. Ishimaru, M. Shimura, and Y. Sato, “Neural mechanism of pupillary dilation elicited by electro-acupuncture stimulation in anesthetized rats,” Journal of the Autonomic Nervous System, vol. 64, no. 2-3, pp. 101–106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. D.-L. Liu, W.-T. Wang, J.-L. Xing, and S.-J. Hu, “Research progress in transient receptor potential vanilloid 1 of sensory nervous system,” Neuroscience Bulletin, vol. 25, no. 4, pp. 221–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. M. Patterson, H. Zheng, S. M. Ward, and H.-R. Berthoud, “Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract,” Cell and Tissue Research, vol. 311, no. 3, pp. 277–287, 2003. View at Google Scholar · View at Scopus
  24. T. S. Abraham, M.-L. Chen, and S.-X. Ma, “TRPV1 expression in acupuncture points: response to electroacupuncture stimulation,” Journal of Chemical Neuroanatomy, vol. 41, no. 3, pp. 129–136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. J. Caterina, A. Leffler, A. B. Malmberg et al., “Impaired nociception and pain sensation in mice lacking the capsaicin receptor,” Science, vol. 288, no. 5464, pp. 306–313, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. H. R. Koerber, S. L. McIlwrath, J. J. Lawson et al., “Cutaneous C-polymodal fibers lacking TRPV1 are sensitized to heat following inflammation, but fail to drive heat hyperalgesia in the absence of TPV1 containing C-heat fibers,” Molecular Pain, vol. 6, no. 58, 2010. View at Publisher · View at Google Scholar · View at Scopus