Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 360302, 12 pages
http://dx.doi.org/10.1155/2013/360302
Research Article

Microarray Analysis of mRNA and MicroRNA Expression Profile Reveals the Role of β-Sitosterol-D-glucoside in the Proliferation of Neural Stem Cell

1Medical College of Jinan University, 601 Huangpu Road West, Guangzhou 510632, China
2Department of Pharmacognosy, Nanjing University of Chinese Medicine, Nanjing 210038, China
3Basic Medical College of Nanjing University of Chinese Medicine, Nanjing 210038, China
4Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China

Received 11 June 2013; Accepted 27 September 2013

Academic Editor: Xiang-Yu Hou

Copyright © 2013 Li-hua Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. Reynolds, W. Tetzlaff, and S. Weiss, “A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes,” Journal of Neuroscience, vol. 12, no. 11, pp. 4565–4574, 1992. View at Google Scholar · View at Scopus
  2. B. A. Reynolds and S. Weiss, “Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system,” Science, vol. 255, no. 5052, pp. 1707–1710, 1992. View at Google Scholar · View at Scopus
  3. P. Miltiadous, G. Kouroupi, A. Stamatakis et al., “Subventricular zone-derived neural stem cell grafts protect against hippocampal degeneration and restore cognitive function in the mouse following intrahippocampal kainic Acid administration,” Stem Cells Translational Medicine, vol. 2, no. 3, pp. 185–198, 2013. View at Google Scholar
  4. H. Ma, B. Yu, L. Kong, Y. Zhang, and Y. Shi, “Neural stem cells over-expressing brain-derived neurotrophic factor (BDNF) stimulate synaptic protein expression and promote functional recovery following transplantation in rat model of traumatic brain injury,” Neurochemical Research, vol. 37, no. 1, pp. 69–83, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Li, H. Su, Q. L. Fu et al., “Soluble NgR fusion protein modulates the proliferation of neural progenitor cells via the notch pathway,” Neurochemical Research, vol. 36, no. 12, pp. 2363–2372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Chen, X. Huang, W. Chen, N. Wang, and L. Li, “Tenuigenin promotes proliferation and differentiation of hippocampal neural stem cells,” Neurochemical Research, vol. 37, no. 4, pp. 771–777, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. R. W. C. Wong and L. Guillaud, “The role of epidermal growth factor and its receptors in mammalian CNS,” Cytokine and Growth Factor Reviews, vol. 15, no. 2-3, pp. 147–156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Mason, “Initiation to end point: the multiple roles of fibroblast growth factors in neural development,” Nature Reviews Neuroscience, vol. 8, no. 8, pp. 583–596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. J. D. Bouic, S. Etsebeth, R. W. Liebenberg, C. F. Albrecht, K. Pegel, and P. P. Van Jaarsveld, “Beta-sitosterol and beta-sitosterol glucoside stimulate human peripheral blood lymphocyte proliferation: implications for their use as an immunomodulatory vitamin combination,” International Journal of Immunopharmacology, vol. 18, no. 12, pp. 693–700, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. J. N. Choi, Y. H. Choi, J. M. Lee et al., “Anti-inflammatory effects of β-sitosterol-β-D-glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages,” Natural Product Research, vol. 26, no. 24, pp. 2340–2343, 2012. View at Google Scholar
  11. M. Deepak, G. Dipankar, D. Prashanth, M. K. Asha, A. Amit, and B. V. Venkataraman, “Tribulosin and β-sitosterol-D-glucoside, the anthelmintic principles of Tribulus terrestris,” Phytomedicine, vol. 9, no. 8, pp. 753–756, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. P. J. D. Bouic and J. H. Lamprecht, “Plant sterols and sterolins: a review of their immune-modulating properties,” Alternative Medicine Review, vol. 4, no. 3, pp. 170–177, 1999. View at Google Scholar · View at Scopus
  13. J.H. Lee, J. Y. Lee, J. H. Park et al., “Immunoregulatory activity by daucosterol, a β-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice,” Vaccine, vol. 25, no. 19, pp. 3834–3840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. P. Lim, N. C. Lau, P. Garrett-Engele et al., “Microarray analysis shows that some microRNAs downregulate large numbers of-target mRNAs,” Nature, vol. 433, no. 7027, pp. 769–773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology. The Gene Ontology Consortium,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Guo, Y. Zeng, Y. Liang, L. Wang, H. Su, and W. Wu, “Cyclosporine affects the proliferation and differentiation of neural stem cells in culture,” NeuroReport, vol. 18, no. 9, pp. 863–868, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Azuaje, Y. Devaux, and D. R. Wagner, “Coordinated modular functionality and prognostic potential of a heart failure biomarker-driven interaction network,” BMC Systems Biology, vol. 4, pp. 60–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Liu and X. Zhao, “MicroRNAs in adult and embryonic neurogenesis,” Neuromolecular Medicine, vol. 11, no. 3, pp. 141–152, 2009. View at Google Scholar · View at Scopus
  21. Q. Shen and S. Temple, “Fine control: microRNA regulation of adult neurogenesis,” Nature Neuroscience, vol. 12, no. 4, pp. 369–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. C. Cheng, E. Pastrana, M. Tavazoie, and F. Doetsch, “MiR-124 regulates adult neurogenesis in the subventricular zone stem cell niche,” Nature Neuroscience, vol. 12, no. 4, pp. 399–408, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Zhao, G. Sun, S. Li, and Y. Shi, “A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination,” Nature Structural and Molecular Biology, vol. 16, no. 4, pp. 365–371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Girnita, L. Girnita, F. del Prete, A. Bartolazzi, O. Larsson, and M. Axelson, “Cyclolignans as inhibitors of the isulin-like growth factor-1 receptor and malignant cell growth,” Cancer Research, vol. 64, no. 1, pp. 236–242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Vasilcanu, A. Girnita, L. Girnita, R. Vasilcanu, M. Axelson, and O. Larsson, “The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway,” Oncogene, vol. 23, no. 47, pp. 7854–7862, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Iwai, K. Sato, N. Omori et al., “Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 4, pp. 411–419, 2002. View at Google Scholar · View at Scopus
  27. M. Iwai, K. Sato, H. Kamada et al., “Temporal profile of stem cell division, migration, and differentiation from subventricular zone to olfactory bulb after transient forebrain ischemia in gerbils,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 3, pp. 331–341, 2003. View at Google Scholar · View at Scopus
  28. “Monograph. Plant sterols and sterolins,” Alternative Medicine Review, vol. 6, no. 2, pp. 203–206, 2001.
  29. F. Aylward and B. W. Nichols, “Isolation of β-sitosterol-D-glucoside from groundnut phospholipids,” Nature, vol. 181, no. 4615, article 1064, 1958. View at Publisher · View at Google Scholar · View at Scopus
  30. A. H. Salway, “The synthetical preparation of the d-glucosides of sitosterol, cholesterol, and some fatty alcohols,” Journal of the Chemical Society, vol. 103, pp. 1022–1029, 1913. View at Publisher · View at Google Scholar · View at Scopus
  31. A. J. D'Ercole, P. Ye, and A. S. Calikoglu, “The role of the insulin-like growth factors in the central nervous system,” Molecular Neurobiology, vol. 13, no. 3, pp. 227–255, 1996. View at Google Scholar
  32. G. J. Popken, R. D. Hodge, P. Ye et al., “In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system,” The European Journal of Neuroscience, vol. 19, no. 8, pp. 2056–2068, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. M. Cheng, M. Cohen, V. Tseng, and C. A. Bondy, “Endogenous IGF1 enhances cell survival in the postnatal dentate gyrus,” Journal of Neuroscience Research, vol. 64, no. 4, pp. 341–347, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. P. Yan, K. A. Sailor, R. Vemuganti, and R. J. Dempsey, “Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation,” The European Journal of Neuroscience, vol. 24, no. 1, pp. 45–54, 2006. View at Publisher · View at Google Scholar · View at Scopus