Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 391247, 12 pages
http://dx.doi.org/10.1155/2013/391247
Research Article

Persea americana Mill. Seed: Fractionation, Characterization, and Effects on Human Keratinocytes and Fibroblasts

1Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
2Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), 44270 Guadalajara, JAL, Mexico
3Institute for Pharmaceutical Biology and Phytochemistry, University of Muenster, Hittorfstraße 56, 48149 Muenster, Germany

Received 20 May 2013; Revised 29 August 2013; Accepted 10 September 2013

Academic Editor: Evan Paul Cherniack

Copyright © 2013 Maria del R. Ramos-Jerz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Martinez, Las Plantas Medicinales de México, Editorial Botas, 1959.
  2. L. Valenzano and A. Di Carlo, “The use of avocado and soya extracts in dermatological therapy,” Minerva Dermatologica, vol. 110, no. 5, pp. 212–214, 1975. View at Google Scholar · View at Scopus
  3. Y. Wu, L.-X. Du, C. Chen et al., “Clinical efficacy and safety of a moisturizer containing purslane and american avocado extracts in the adjuvant treatment of asteatotic eczema,” Journal of Clinical Dermatology, vol. 38, no. 6, pp. 349–351, 2009. View at Google Scholar · View at Scopus
  4. X.-Y. Yang, L.-M. Xu, A.-M. Zhou et al., “The adjuvant treatment of atopic dermatitis with medical skin preparation containing extracts from Portulaca oleracea and avocado,” Journal of Clinical Dermatology, vol. 39, no. 7, pp. 460–462, 2010. View at Google Scholar · View at Scopus
  5. B. S. Nayak, S. S. Raju, and A. V. Chalapathi Rao, “Wound healing activity of Persea americana (avocado) fruit: a preclinical study on rats,” Journal of Wound Care, vol. 17, no. 3, pp. 123–126, 2008. View at Google Scholar · View at Scopus
  6. G. Rosenblat, S. Meretski, J. Segal et al., “Polyhydroxylated fatty alcohols derived from avocado suppress inflammatory response and provide non-sunscreen protection against UV-induced damage in skin cells,” Archives of Dermatological Research, vol. 303, no. 4, pp. 239–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Msika, “Use of C7 sugars in prevention and treatment of mycoses,” 12/310, 450, US, 2009/0239812 A1, August 2007.
  8. I. Paoletti, E. Buommino, L. Tudisco et al., “Patented natural avocado sugars modulate the HBD-2 expression in human keratinocytes through the involvement of protein kinase C and protein tyrosine kinases,” Archives of Dermatological Research, vol. 302, no. 3, pp. 201–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Kut-Lasserre, C. C. Miller, A. L. Ejeil et al., “Effect of avocado and soybean unsaponifiables on gelatinase A (MMP-2), stromelysin 1 (MMP-3), and tissue inhibitors of matrix metalloproteinase (TIMP-1 and TIMP-2) secretion by human fibroblasts in culture,” Journal of Periodontology, vol. 72, no. 12, pp. 1685–1694, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. O. K. Kim, A. Murakami, D. Takahashi et al., “An avocado constituent, persenone A, suppresses expression of inducible forms of nitric oxide synthase and cyclooxygenase in macrophages, and hydrogen peroxide generation in mouse skin,” Bioscience, Biotechnology and Biochemistry, vol. 64, no. 11, pp. 2504–2507, 2000. View at Google Scholar · View at Scopus
  11. J.-G. Rodríguez-Carpena, D. Morcuende, M.-J. Andrade, P. Kylli, and M. Estevez, “Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties,” Journal of Agricultural and Food Chemistry, vol. 59, no. 10, pp. 5625–5635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. B. Friesen and G. F. Pauli, “Performance characteristics of countercurrent separation in analysis of natural products of agricultural significance,” Journal of Agricultural and Food Chemistry, vol. 56, no. 1, pp. 19–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K.-I. Harada, M. Suzuki, A. Kato, K. Fujii, H. Oka, and Y. Ito, “Separation of WAP-8294A components, a novel anti-methicillin-resistant Staphylococcus aureus antibiotic, using high-speed counter-current chromatography,” Journal of Chromatography A, vol. 932, no. 1-2, pp. 75–81, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Ito, “Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography,” Journal of Chromatography A, vol. 1065, no. 2, pp. 145–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. del Refugio Ramos, G. Jerz, S. Villanueva, F. López-Dellamary, R. Waibel, and P. Winterhalter, “Two glucosylated abscisic acid derivates from avocado seeds (Persea americana Mill. Lauraceae cv. Hass),” Phytochemistry, vol. 65, no. 7, pp. 955–962, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Ramos-Jerz, Phytochemical Analysis of Avocado Seeds (Persea americana Mill., c.v. Hass), Cuvillier, Göttingen, Germany, 2007.
  17. M. V. Berridge, P. M. Herst, and A. S. Tan, “Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction,” Biotechnology Annual Review, vol. 11, pp. 127–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. I. M. Leigh and F. Watt, “The culture of human epidermal keratinocytes,” in The Keratinocyte Handbook, I. M. Leigh, E. B. Lane, and F. Watt, Eds., p. 45, Cambridge University Press, Cambridge, Mass, USA, 1995. View at Google Scholar
  19. H. Iizuka, H. Takahashi, M. Honma, and A. Ishida-Yamamoto, “Unique keratinization process in psoriasis: late differentiation markers are abolished because of the premature cell death,” Journal of Dermatology, vol. 31, no. 4, pp. 271–276, 2004. View at Google Scholar · View at Scopus
  20. K. Gescher and A. M. Deters, “Typha latifolia L. fruit polysaccharides induce the differentiation and stimulate the proliferation of human keratinocytes in vitro,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 352–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Louis, F. Petereit, M. Lechtenberg, A. Deters, and A. Hensel, “Phytochemical characterization of Rhododendron ferrugineum and in vitro assessment of an aqueous extract on cell toxicity,” Planta Medica, vol. 76, no. 14, pp. 1550–1557, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Mitev and L. Miteva, “Signal transduction in keratinocytes,” Experimental Dermatology, vol. 8, no. 2, pp. 96–108, 1999. View at Google Scholar · View at Scopus
  23. M. Sadagurski, S. Yakar, G. Weingarten et al., “Insulin-like growth factor 1 receptor signaling regulates skin development and inhibits skin keratinocyte differentiation,” Molecular and Cellular Biology, vol. 26, no. 7, pp. 2675–2687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Owens, G. Han, A. G. Li, and X.-J. Wang, “The role of Smads in skin development,” Journal of Investigative Dermatology, vol. 128, no. 4, pp. 783–790, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Deucher, T. Efimova, and R. L. Eckert, “Calcium-dependent involucrin expression is inversely regulated by protein kinase C (PKC)α and PKCδ,” Journal of Biological Chemistry, vol. 277, no. 19, pp. 17032–17040, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Eckes, M. Aumailley, and T. Krieg, “Collagens and the reestablishment of dermal integrity,” in The Molecular and Cellular Biology of Wound Repair, R. A. F. Clark, Ed., pp. 493–512, Plenum Press, New York, NY, USA, 1996. View at Google Scholar
  27. P. B. Bitterman, S. I. Rennard, S. Adelberg, and R. G. Crystal, “Role of fibronectin as a growth factor for fibroblasts,” Journal of Cell Biology, vol. 97, no. 6, pp. 1925–1932, 1983. View at Google Scholar · View at Scopus
  28. S. Pastore, F. Mascia, V. Mariani, and G. Girolomoni, “The epidermal growth factor receptor system in skin repair and inflammation,” Journal of Investigative Dermatology, vol. 128, no. 6, pp. 1365–1374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. B. K. Steele, C. Meyers, and M. A. Ozbun, “Variable expression of some “housekeeping” genes during human keratinocyte differentiation,” Analytical Biochemistry, vol. 307, no. 2, pp. 341–347, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. V. de Giorgi, S. Sestini, D. Massi, I. Ghersetich, and T. Lotti, “Keratinocyte growth factor receptors,” Dermatologic Clinics, vol. 25, no. 4, pp. 477–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. de Leonardis, L. Pizzella, and V. Macciola, “Evaluation of chlorogenic acid and its metabolites as potential antioxidants for fish oils,” European Journal of Lipid Science and Technology, vol. 110, no. 10, pp. 941–948, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. W. Pero, H. Lund, and T. Leanderson, “Antioxidant metabolism induced by quinic acid. increased urinary excretion of tryptophan and nicotinamide,” Phytotherapy Research, vol. 23, no. 3, pp. 335–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Belleudi, V. Purpura, and M. R. Torrisi, “The receptor tyrosine kinase FGFR2b/KGFR controls early differentiation of human keratinocytes,” PLoS ONE, vol. 6, no. 9, Article ID e24194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Duda-Chodak, D. Markiewicz, and P. Pierzchalski, “The effect of quercetin, chlorogenic acid and epigallocatechin on proliferation of Caco-2 cells,” Acta Scientiarum Polonorum, Technologia Alimentaria, vol. 8, no. 1, pp. 63–69, 2009. View at Google Scholar · View at Scopus
  35. E. S. White, R. L. Sagana, A. J. Booth et al., “Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway,” Experimental Cell Research, vol. 316, no. 16, pp. 2644–2653, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. B. K. R. Patel, L.-M. Wang, C.-C. Lee, W. G. Taylor, J. H. Pierce, and W. J. LaRochelle, “Stat6 and Jak1 are common elements in platelet-derived growth factor and interleukin-4 signal transduction pathways in NIH 3T3 fibroblasts,” Journal of Biological Chemistry, vol. 271, no. 36, pp. 22175–22182, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Bruzzone, G. Basile, E. Mannino et al., “Autocrine abscisic acid mediates the UV-B-induced inflammatory response in human granulocytes and keratinocytes,” Journal of Cellular Physiology, vol. 227, no. 6, pp. 2502–2510, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Bruzzone, F. Battaglia, E. Mannino et al., “Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro,” Biochemical and Biophysical Research Communications, vol. 422, no. 1, pp. 70–74, 2012. View at Publisher · View at Google Scholar
  39. H.-H. Li, R.-L. Hao, S.-S. Wu et al., “Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans,” Biochemical Pharmacology, vol. 82, no. 7, pp. 701–712, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. X. Hu, S. Lin, D. Yu, S. Qiu, X. Zhang, and R. Mei, “A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines,” Cell Biology and Toxicology, vol. 26, no. 6, pp. 499–507, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Zhang, X. Chen, Y. Yang, X. Zhou, J. Liu, and F. Ding, “Neuroprotection against cobalt chloride-induced cell apoptosis of primary cultured cortical neurons by salidroside,” Molecular and Cellular Biochemistry, vol. 354, no. 1-2, pp. 161–170, 2011. View at Publisher · View at Google Scholar
  42. G.-X. Mao, Y. Wang, Q. Qiu et al., “Salidroside protects human fibroblast cells from premature senescence induced by H2O2 partly through modulating oxidative status,” Mechanisms of Ageing and Development, vol. 131, no. 11-12, pp. 723–731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Delépée, S. Berteina-Raboin, M. Lafosse et al., “Synthesis, purification, and activity of salidroside,” Journal of Liquid Chromatography and Related Technologies, vol. 30, no. 14, pp. 2069–2080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. R. Palumbo, F. Occhiuto, F. Spadaro, and C. Circosta, “Rhodiola rosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium,” Phytotherapy Research, vol. 26, no. 6, pp. 878–883, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Kim, X. Wu, I. Song et al., “Selective cytotoxicity of synthesized procyanidin 3-O-galloylepicatechin- 4b, 8-3-O-galloylcatechin to human cancer cells,” Cell Cycle, vol. 7, no. 11, pp. 1648–1657, 2008. View at Google Scholar · View at Scopus
  46. T. Tatsuno, M. Jinno, Y. Arima et al., “Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin,” Biological & Pharmaceutical Bulletin, vol. 35, pp. 909–916, 2012. View at Publisher · View at Google Scholar
  47. M. Zhao, B. Yang, J. Wang, Y. Liu, L. Yu, and Y. Jiang, “Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn.) pericarp,” International Immunopharmacology, vol. 7, no. 2, pp. 162–166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Kamimura and T. Takahashi, “Procyanidin B-2, extracted from apples, promotes hair growth: a laboratory study,” British Journal of Dermatology, vol. 146, no. 1, pp. 41–51, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Khanna, M. Venojarvi, S. Roy et al., “Dermal wound healing properties of redox-active grape seed proanthocyanidins,” Free Radical Biology and Medicine, vol. 33, no. 8, pp. 1089–1096, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. A. M. Robert, N. Groult, C. Six, and L. Robert, “Study of the effect of procyanidolic oligomers on mesenchymal cells in culture. II. Attachment of elastic fibers to the cells,” Pathologie Biologie, vol. 38, no. 6, pp. 601–607, 1990. View at Google Scholar · View at Scopus