Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 407839, 8 pages
http://dx.doi.org/10.1155/2013/407839
Research Article

The Protective Role of Resveratrol against Arsenic Trioxide-Induced Cardiotoxicity

1College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
2College of Animal Science and Veterinary, Medicine, Jilin University, Changchun 130062, China
3Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Jilin 132109, China

Received 2 February 2013; Revised 30 August 2013; Accepted 17 September 2013

Academic Editor: Ka Kit Hui

Copyright © 2013 Weiqian Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y.S. Chang, K.H. Lu, H.J. Lee et al., “Synergistic apoptosis-inducing antileukemic effects of arsenic trioxide and mucuna macrocarpa stem extract in human leukemic cells via a reactive oxygen species-dependent mechanism,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 921430, 14 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Ohnishi, H. Yoshida, K. Shigeno et al., “Prolongation of the QT interval and ventricular tachycardia in patients treated with arsenic trioxide for acute promyelocytic leukemia,” Annals of Internal Medicine, vol. 133, no. 11, pp. 881–885, 2000. View at Google Scholar · View at Scopus
  3. B. S. L. Soignet, S. R. Frankel, D. Douer, M. S. Tallman, H. Kantarjian, and E. Calleja, “United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia,” Journal of Clinical Oncology, vol. 19, no. 18, pp. 3852–3860, 2001. View at Google Scholar · View at Scopus
  4. P. Westervelt, R. A. Brown, D. R. Adkins et al., “Sudden death among patients with acute promyelocytic leukemia treated with arsenic trioxide,” Blood, vol. 98, no. 2, pp. 266–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Ficker, Y. A. Kuryshev, A. T. Dennis et al., “Mechanisms of arsenic-induced prolongation of cardiac repolarization,” Molecular Pharmacology, vol. 66, no. 1, pp. 33–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Hirano, X. Cui, S. Li et al., “Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenic in rat heart microvessel endothelial cells,” Archives of Toxicology, vol. 77, no. 6, pp. 305–312, 2003. View at Google Scholar · View at Scopus
  7. J.T. Hwang, D. Y. Kwon, O. J. Park, and M. S. Kim, “Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells,” Genes and Nutrition, vol. 2, no. 4, pp. 323–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Manna, M. Sinha, and P. C. Sil, “Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid,” Archives of Toxicology, vol. 82, no. 3, pp. 137–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Dudka, R. Gieroba, A. Korga et al., “Different effects of resveratrol on dose-related Doxorubicin-induced heart and liver toxicity,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 606183, 10 pages, 2012. View at Publisher · View at Google Scholar
  10. S. Das and D. K. Das, “Resveratrol: a therapeutic promise for cardiovascular diseases,” Recent Patents on Cardiovascular Drug Discovery, vol. 2, no. 2, pp. 133–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Sulaiman, M. J. Matta, N. R. Sunderesan, M. P. Gupta, M. Periasamy, and M. Gupta, “Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 298, no. 3, pp. H833–H843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Baur, K. J. Pearson, N. L. Price et al., “Resveratrol improves health and survival of mice on a high-calorie diet,” Nature, vol. 444, no. 7117, pp. 337–342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S.J. Park, F. Ahmad, A. Philp et al., “Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases,” Cell, vol. 148, no. 3, pp. 421–433, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. R. I. Tennen, E. Michishita Kioi, and K. F. Chua, “Finding a target for resveratrol,” Cell, vol. 148, no. 3, pp. 387–389, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. X.Y. Zhao, G.Y. Li, Y. Liu et al., “Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo,” British Journal of Pharmacology, vol. 154, no. 1, pp. 105–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. P. Maxwell, Y. Wang, and L. McIntosh, “The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 14, pp. 8271–8276, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Lakritz, C. G. Plopper, and A. R. Buckpitt, “Validated high-performance liquid chromatography-electrochemical method for determination of glutathione and glutathione disulfide in small tissue samples,” Analytical Biochemistry, vol. 247, no. 1, pp. 63–68, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Csanaky and Z. Gregus, “Effect of selenite on the disposition of arsenate and arsenite in rats,” Toxicology, vol. 186, no. 1-2, pp. 33–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Kimura, “New generation of Ca2+ indicators with greatly improved fluorescence properties,” Tanpakushitsu Kakusan Koso, vol. 52, no. 13, pp. 1758–1759, 2007. View at Google Scholar · View at Scopus
  20. X. Shi and B. Zhou, “The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos,” Toxicological Sciences, vol. 115, no. 2, pp. 391–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. H. V. Aposhian and M. M. Aposhian, “Arsenic toxicology: five questions,” Chemical Research in Toxicology, vol. 19, no. 1, pp. 1–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Y. Oudit, M. G. Trivieri, N. Khaper et al., “Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model,” Circulation, vol. 109, no. 15, pp. 1877–1885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Yang, S. W. Chan, M. Hu, R. Walden, and B. Tomlinson, “Effects of some common food constituents on cardiovascular disease,” ISRN Cardiology, vol. 2011, Article ID 397136, 16 pages, 2011. View at Publisher · View at Google Scholar
  24. E. Bassenge, O. Sommer, M. Schwemmer, and R. Bünger, “Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 279, no. 5, pp. H2431–H2438, 2000. View at Google Scholar · View at Scopus
  25. D.X. Hou, Y. Korenori, S. Tanigawa et al., “Dynamics of Nrf2 and Keap1 in ARE-mediated NQO1 expression by wasabi 6-(methylsulfinyl)hexyl isothiocyanate,” Journal of Agricultural and Food Chemistry, vol. 59, no. 22, pp. 11975–11982, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Baur and D. A. Sinclair, “Therapeutic potential of resveratrol: the in vivo evidence,” Nature Reviews Drug Discovery, vol. 5, no. 6, pp. 493–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. I. El Hamamsy, L.M. Stevens, M. Carrier et al., “Effect of intravenous N-acetylcysteine on outcomes after coronary artery bypass surgery: a randomized, double-blind, placebo-controlled clinical trial,” Journal of Thoracic and Cardiovascular Surgery, vol. 133, no. 1, pp. 7–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kinlay, D. Behrendt, J. C. Fang et al., “Long-term effect of combined vitamins E and C on coronary and peripheral endothelial function,” Journal of the American College of Cardiology, vol. 43, no. 4, pp. 629–634, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Joseph, H. Tze chen, and Z. R. Wang, “Cardioprotection by resveratrol: a review of effects/targets in cultured cells and animal tissues,” American Journal of Cardiovascular Disease, vol. 1, pp. 38–47, 2011. View at Google Scholar
  30. W. Zhang, J. Xue, M. Ge, M. Yu, L. Liu, and Z. Zhang, “Resveratrol attenuates hepatotoxicity of rats exposed to arsenic trioxide,” Food and Chemical Toxicology, vol. 51, pp. 87–92, 2013. View at Publisher · View at Google Scholar
  31. G. Haskó and P. Pacher, “Endothelial Nrf2 activation: a new target for resveratrol?” American Journal of Physiology: Heart and Circulatory Physiology, vol. 299, no. 1, pp. H10–H12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. M. Shaw and Y. Rudy, “Ionic mechanisms of propagation in cardiac tissue: roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling,” Circulation Research, vol. 81, no. 5, pp. 727–741, 1997. View at Google Scholar · View at Scopus
  33. M. Lagouge, C. Argmann, Z. Gerhart-Hines et al., “Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α,” Cell, vol. 127, no. 6, pp. 1109–1122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Orrenius, V. O. Kaminskyy, and B. Zhivotovsky, “Autophagy in toxicology: cause or consequence?” The Annual Review of Pharmacology and Toxicology, vol. 53, pp. 275–97, 2013. View at Publisher · View at Google Scholar
  35. D. Sumi, T. Sasaki, H. Miyataka, and S. Himeno, “Rat H9c2 cardiac myocytes are sensitive to arsenite due to a modest activation of transcription factor Nrf2,” Archives of Toxicology, vol. 85, no. 12, pp. 1509–1516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Athar, J. H. Back, X. Tang et al., “Resveratrol: a review of preclinical studies for human cancer prevention,” Toxicology and Applied Pharmacology, vol. 224, no. 3, pp. 274–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Matés, J. A. Segura, F. J. Alonso, and J. Márquez, “Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis,” Archives of Toxicology, vol. 82, no. 5, pp. 273–299, 2008. View at Publisher · View at Google Scholar · View at Scopus