Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 423809, 10 pages
Research Article

Propolis Modifies Collagen Types I and III Accumulation in the Matrix of Burnt Tissue

1Department of Community Pharmacy, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
2Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
3Center of Experimental Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
4Department of Statistics, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland

Received 3 April 2013; Accepted 29 April 2013

Academic Editor: Ewelina Szliszka

Copyright © 2013 Pawel Olczyk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Wound healing represents an interactive process which requires highly organized activity of various cells, synthesizing cytokines, growth factors, and collagen. Collagen types I and III, serving as structural and regulatory molecules, play pivotal roles during wound healing. The aim of this study was to compare the propolis and silver sulfadiazine therapeutic efficacy throughout the quantitative and qualitative assessment of collagen types I and III accumulation in the matrix of burnt tissues. Burn wounds were inflicted on pigs, chosen for the evaluation of wound repair because of many similarities between pig and human skin. Isolated collagen types I and III were estimated by the surface plasmon resonance method with a subsequent collagenous quantification using electrophoretic and densitometric analyses. Propolis burn treatment led to enhanced collagens and its components expression, especially during the initial stage of the study. Less expressed changes were observed after silver sulfadiazine (AgSD) application. AgSD and, with a smaller intensity, propolis stimulated accumulation of collagenous degradation products. The assessed propolis therapeutic efficacy, throughout quantitatively and qualitatively analyses of collagen types I and III expression and degradation in wounds matrix, may indicate that apitherapeutic agent can generate favorable biochemical environment supporting reepithelization.