Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 486047, 6 pages
http://dx.doi.org/10.1155/2013/486047
Research Article

Rhinacanthus nasutus Ameliorates Cytosolic and Mitochondrial Enzyme Levels in Streptozotocin-Induced Diabetic Rats

1Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
2Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
3Department of Biochemistry, Sri Venkateswara Medical College, Tirupati 517502, Andhra Pradesh, India
4Department of Zoology, Yogi Vemana University, Kadapa 516003, Andhra Pradesh, India

Received 13 February 2013; Revised 11 March 2013; Accepted 16 March 2013

Academic Editor: William C. Cho

Copyright © 2013 Pasupuleti Visweswara Rao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. K. Babu, K. Vinay, S. K. Sameena, S. V. Prasad, S. Swapna, and A. R. C. Appa Rao, “Antihyperglycemic and antioxidant effects of Talinum portulacifolium leaf extracts in streptozotocin diabetic rats: a dose-dependent study,” Pharmacognosy Magazine, vol. 5, no. 19, pp. 1–10, 2009. View at Google Scholar · View at Scopus
  2. B. Sharma, C. Balomajumder, and P. Roy, “Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats,” Food and Chemical Toxicology, vol. 46, no. 7, pp. 2376–2383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. W. C. S. Cho, W. S. Chung, S. K. W. Lee, A. W. N. Leung, C. H. K. Cheng, and K. K. M. Yue, “Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats,” European Journal of Pharmacology, vol. 550, no. 1–3, pp. 173–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Abdul Nabi, R. B. Kasetti, S. Sirasanagandla et al., “Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats,” BMC Complementary and Alternative Medicine, vol. 13, article 37, 2013. View at Google Scholar
  5. L. Pari and S. Srinivasan, “Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats,” Biomedicine and Pharmacotherapy, vol. 64, no. 7, pp. 477–481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. R. Kirtikar and B. D. Basu, Indian Medicinal Plants with Illustration, vol. 3, International Book Distributors, Dehra Dun, India, 2nd edition, 2005.
  7. M. B. James and T. Tewin, “Rhinacanthus nasutus protects cultured neuronal cells against hypoxia induced cell death,” Molecules, vol. 16, no. 8, pp. 6322–6338, 2011. View at Publisher · View at Google Scholar
  8. P. Kupradinun, P. Siripong, R. Chanpai, S. Piyaviriyagul, A. Rungsipipat, and S. Wangnaitham, “Effects of Rhinacanthus nasutus Kurz on colon carcinogenesis in mice,” Asian Pacific Journal of Cancer Prevention, vol. 10, no. 1, pp. 103–106, 2009. View at Google Scholar · View at Scopus
  9. W. Rojanapo, A. Tepsuwan, and P. Siripong, “Mutagenicity and antimutagenicity of Thai medicinal plants.,” Basic life sciences, vol. 52, pp. 447–452, 1990. View at Google Scholar · View at Scopus
  10. P. Visweswara Rao, K. Madhavi, and M. Dhananjaya Naidu, “Hypolipideic properties of Rhinacanthus nasutus in streptozotocin-induced diabetic rats,” Journal of Pharmacology and Toxicology, vol. 6, pp. 589–595, 2011. View at Publisher · View at Google Scholar
  11. P. Visweswara Rao, P. Sujana, T. Vijayakanth, and M. Dhananjaya Naidu, “Rhinacanthus nasutus—its protective role in oxidative stress and antioxidant status in streptozotocin-induced diabetic rats,” Asian Pacific Journal of Tropical Disease, vol. 2, no. 4, pp. 327–330, 2012. View at Google Scholar
  12. R. B. Kasetti, M. D. Rajasekhar, V. K. Kondeti et al., “Antihyperglycemic and antihyperlipidemic activities of methanol:water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats,” Food and Chemical Toxicology, vol. 48, no. 4, pp. 1078–1084, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. P. V. Rao and M. D. Naidu, “Anti diabetic effect of Rhinacanthus nasutus leaf extract in streptozotocin induced diabetic rats,” Libyan Agriculture Research Center Journal International, vol. 1, no. 5, pp. 310–312, 2010. View at Google Scholar
  14. J. B. Harborne, Phytochemical Methods a Guide to Modern Techniques of Plant Analysis, Springer, New Delhi, India, 3rd edition, 2005.
  15. C. K. Kokate, A. P. Purohit, and S. B. Gokhale, Pharmacognosy, Nirali Prakashan, Pune, India, 4th edition, 1996.
  16. K. Peach and M. V. Tracey, Modern Method of Plant Analysis, Narosa Publishing House, New Delhi, India, 1959.
  17. G. E. Trease and W. C. Evans, Pharmacognosy, Bailliere Tindall, London, UK, 11th edition, 1978.
  18. Y. Prameelamma and K. S. Swami, “Glutamate dehydrogenase activity in the normal and denervated gastrocnemius muscle of frog. Rana hexadactyla,” Current Science, vol. 44, pp. 739–740, 1975. View at Google Scholar
  19. G. D. Lohr and H. D. Waller, “Glucose 6-phosphate dehydrogenase,” in Methods in Enzymatic Analysis, H. U. Bergmayer, Ed., vol. 2, pp. 636–643, Academic Press, London, UK, 1974. View at Google Scholar
  20. M. M. Nachlas, S. I. Margulies, J. D. Goldberg, and A. M. Seligman, “The determination of lactic dehydrogenase with a tetrazolium salt,” Analytical Biochemistry, vol. 1, pp. 317–326, 1960. View at Publisher · View at Google Scholar
  21. Y. P. Lee and H. A. Lardy, “Influence of thyroid hormones on L-α-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat,” The Journal of Biological Chemistry, vol. 240, pp. 1427–1436, 1965. View at Google Scholar
  22. M. Farswan, P. M. Mazumder, and V. Percha, “Protective effect of Cassia glauca Linn. on the serum glucose and hepatic enzymes level in streptozotocin induced NIDDM in rats,” Indian Journal of Pharmacology, vol. 41, no. 1, pp. 19–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. S. Patel and R. K. Goyal, “Prevention of diabetes-induced myocardial dysfunction in rats using the juice of the Emblica officinalis fruit,” Experimental & Clinical Cardiology, vol. 16, pp. 87–91, 2011. View at Google Scholar
  24. M. Prasenjit and C. S. Parames, “Impaired redox signaling and mitochondrial uncoupling contributes vascular inflammation and cardiac dysfunction in type 1 diabetes: protective role of arjunolic acid,” Biochimie, vol. 94, pp. 786–797, 2012. View at Publisher · View at Google Scholar
  25. S. N. Singh, P. Vats, S. Suri et al., “Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats,” Journal of Ethnopharmacology, vol. 76, no. 3, pp. 269–277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. E. K. Ainscow, C. Zhao, and G. A. Rutter, “Acute overexpression of lactate dehydrogenase-A perturbs β-cell mitochondrial metasbolism and insulin secretion,” Diabetes, vol. 49, no. 7, pp. 1149–1155, 2000. View at Google Scholar · View at Scopus
  27. R. T. Narendhirakannan, S. Subramanian, and M. Kandaswamy, “Biochemical evaluation of antidiabetogenic properties of some commonly used Indian plants on streptozotocin-induced diabetes in experimental rats,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 12, pp. 1150–1157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Luzi and G. Pozza, “Glibenclamide: an old drug with a novel mechanism of action,” Acta Diabetol, vol. 34, pp. 239–244, 1997. View at Publisher · View at Google Scholar
  29. J. G. Satav and S. S. Katyare, “Effect of streptozotocin-induced diabetes on oxidative energy metabolism in rat liver mitochondria—a comparative study of early and late effects,” Indian Journal of Clinical Biochemistry, vol. 19, no. 2, pp. 23–31, 2004. View at Google Scholar · View at Scopus
  30. G. A. Dudley, R. S. Staron, and T. F. Murray, “Muscle fiber composition and blood ammonia levels after intense exercise in humans,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 54, no. 2, pp. 582–586, 1983. View at Google Scholar · View at Scopus
  31. K. Rasineni, R. Bellamkonda, S. R. Singareddy, and S. Desireddy, “Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats,” Pharmacognosy Research, vol. 2, no. 3, pp. 195–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. S. Sellamuthu, B. P. Muniappan, S. M. Perumal, and M. Kandasamy, “Antihyperglycemic effect of mangiferin in streptozotocin induced diabetic rats,” Journal of Health Science, vol. 55, no. 2, pp. 206–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Aseervatham, S. Palanivelu, and S. Panchanadham, “Semecarpus anacardium (Bhallataka) alters the glucose metabolism and energy production in diabetic rats,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 142978, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Díaz-Flores, M. A. Ibáñez-Hernández, R. E. Galván et al., “Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat,” Life Sciences, vol. 78, no. 22, pp. 2601–2607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Jiang, Z. Xie, H. J. Koo, S. P. McLaughlin, B. N. Timmermann, and D. R. Gang, “Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: tools for authentication of ginger (Zingiber officinale Rosc.),” Phytochemistry, vol. 67, no. 15, pp. 1673–1685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. P. K. Shankar, V. Kumar, and N. Rao, “Evaluation of antidiabetic activity of ginkgo biloba in streptozotocin-induced diabetic rats,” Iranian Journal of Pharmacology and Therapeutics, vol. 4, pp. 16–19, 2005. View at Google Scholar
  37. G. R. Gandhi, S. Ignacimuthu, and M. G. Paulraj, “Hypoglycemic and b-cells regenerative effects of Aegle marmelos (L.) Corr. Bark extract in streptozotocin-induced diabetic rats,” Food and Chemical Toxicology, vol. 50, pp. 1667–1674, 2012. View at Publisher · View at Google Scholar
  38. P. Newsholme, E. P. Haber, S. M. Hirabara et al., “Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity,” The Journal of Physiology, vol. 583, pp. 9–24, 2012. View at Google Scholar
  39. A. Sendl, J. L. Chen, S. D. Jolad et al., “Two new naphthoquinones with antiviral activity from Rhinacanthus nasutus,” Journal of Natural Products, vol. 59, no. 8, pp. 808–811, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Gotoh, T. Sakaeda, T. Kimura et al., “Antiproliferative activity of Rhinacanthus nasutus (L.) KURZ extracts and the active moiety, rhinacanthin C,” Biological and Pharmaceutical Bulletin, vol. 27, no. 7, pp. 1070–1074, 2004. View at Publisher · View at Google Scholar · View at Scopus