Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 514095, 13 pages
http://dx.doi.org/10.1155/2013/514095
Research Article

Gastrodin Protects Apoptotic Dopaminergic Neurons in a Toxin-Induced Parkinson’s Disease Model

Department of Biotechnology, Konkuk University, Chungju 380-701, Republic of Korea

Received 19 November 2012; Revised 4 January 2013; Accepted 9 January 2013

Academic Editor: Youn Chul Kim

Copyright © 2013 Hemant Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Gastrodia elata (GE) Blume is one of the most important traditional plants in Oriental countries and has been used for centuries to improve various conditions. The phenolic glucoside gastrodin is an active constituent of GE. The aim of this study was to investigate the neuroprotective role of gastrodin in 1-methyl-4-phenylpyridinium (MPP+)/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP) induced human dopaminergic SH-SY5Y cells and mouse model of Parkinson’s disease (PD), respectively. Gastrodin significantly and dose dependently protected dopaminergic neurons against neurotoxicity through regulating free radicals, Bax/Bcl-2 mRNA, caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP) in SH-SY5Y cells stressed with MPP+. Gastrodin also showed neuroprotective effects in the subchronic MPTP mouse PD model by ameliorating bradykinesia and motor impairment in the pole and rotarod tests, respectively. Consistent with this finding, gastrodin prevented dopamine depletion and reduced reactive astrogliosis caused by MPTP as assessed by immunohistochemistry and immunoblotting in the substantiae nigrae and striatata of mice. Moreover, gastrodin was also effective in preventing neuronal apoptosis by attenuating antioxidant and antiapoptotic activities in these brain areas. These results strongly suggest that gastrodin has protective effects in experimental PD models and that it may be developed as a clinical candidate to ameliorate PD symptoms.