Table of Contents Author Guidelines Submit a Manuscript

An erratum for this article has been published. To view the erratum, please click here.

Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 594857, 10 pages
Research Article

The Preventive Effect of Biochanin A on Bone Loss in Ovariectomized Rats: Involvement in Regulation of Growth and Activity of Osteoblasts and Osteoclasts

Department of Medical Laboratory Science and Biotechnology, School of Medicine and Health Sciences, Fooyin University, No. 151, Chinhsueh Road, Ta-liao, Kaohsiung 83101, Taiwan

Received 30 October 2012; Revised 27 December 2012; Accepted 17 January 2013

Academic Editor: Weena Jiratchariyakul

Copyright © 2013 Shu-Jem Su et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Biochanin A (BCA) is a major isoflavone abundant in red clover (Trifolium pretense). The protective effect of BCA on bone loss in an ovariectomized (OVX) animal model has never been clarified. The objective of this study was to investigate the biological effects of BCA on bone loss in OVX rats in vivo and on the development of osteoblasts and osteoclasts in vitro. Ovariectomy resulted in a marked increase in body weight and a decrease in femoral bone mineral density and trabecular bone volume that was prevented by BCA or 17β-estradiol (E2) treatment. However, an increase in uterine weight was observed in E2-treated OVX rats, but not in response to BCA treatment. Treatment with BCA increased the mRNA expression of osterix, collagen type I, alkaline phosphatase (ALP), and osteocalcin and decreased the mRNA expression of tartrate-resistant acid phosphatase (TRAP) and the receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio in the femur of OVX rats. Treatment with BCA or E2 prevented the OVX-induced increase in urinary deoxypyridinoline (DPD) and serum tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β). In vitro, BCA induced preosteoblasts to differentiate into osteoblasts and increased osteoblast mineralization. BCA inhibited preosteoclasts and osteoclast proliferation and decreased osteoclast bone resorption. These findings suggest that BCA treatment can effectively prevent the OVX-induced increase in bone loss and bone turnover possibly by increasing osteoblastic activities and decreasing osteoclastic activities.