Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 594857, 10 pages
http://dx.doi.org/10.1155/2013/594857
Research Article

The Preventive Effect of Biochanin A on Bone Loss in Ovariectomized Rats: Involvement in Regulation of Growth and Activity of Osteoblasts and Osteoclasts

Department of Medical Laboratory Science and Biotechnology, School of Medicine and Health Sciences, Fooyin University, No. 151, Chinhsueh Road, Ta-liao, Kaohsiung 83101, Taiwan

Received 30 October 2012; Revised 27 December 2012; Accepted 17 January 2013

Academic Editor: Weena Jiratchariyakul

Copyright © 2013 Shu-Jem Su et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. C. Manolagas, “From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis,” Endocrine Reviews, vol. 31, no. 3, pp. 266–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. E. K. Kaye, “Bone health and oral health,” Journal of the American Dental Association, vol. 138, no. 5, pp. 616–619, 2007. View at Google Scholar · View at Scopus
  3. W. Wuttke, H. Jarry, T. Becker et al., “Phytoestrogens: endocrine disrupters or replacement for hormone replacement therapy?” Maturitas, vol. 61, no. 1, pp. 159–170, 2008. View at Google Scholar
  4. K. L. Chang, Y. C. Hu, B. S. Hsieh et al., “Combined effect of soy isoflavones and vitamin D3 on bone loss in ovariectomized rats,” Nutrition, vol. 29, no. 1, pp. 250–257, 2013. View at Publisher · View at Google Scholar
  5. N. L. Booth, C. E. Piersen, S. Banuvar, S. E. Geller, L. P. Shulman, and N. R. Farnsworth, “Clinical studies of red clover (Trifolium pratense) dietary supplements in menopause: a literature review,” Menopause, vol. 13, no. 2, pp. 251–264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. E. Geller and L. Studee, “Soy and red clover for mid-life and aging,” Climacteric, vol. 9, no. 4, pp. 245–263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Atkinson, J. E. Compston, N. E. Day, M. Dowsett, and S. A. Bingham, “The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial1-3,” American Journal of Clinical Nutrition, vol. 79, no. 2, pp. 326–333, 2004. View at Google Scholar · View at Scopus
  8. P. B. Clifton-Bligh, R. J. Baber, G. R. Fulcher, M. L. Nery, and T. Moreton, “The effect of isoflavones extracted from red clover (Rimostil) on lipid and bone metabolism,” Menopause, vol. 8, no. 4, pp. 259–265, 2001. View at Google Scholar · View at Scopus
  9. S. Kawakita, F. Marotta, Y. Naito et al., “Effect of an isoflavones-containing red clover preparation and alkaline supplementation on bone metabolism in ovariectomized rats,” Clinical Interventions in Aging, vol. 4, no. 1, pp. 91–100, 2009. View at Google Scholar · View at Scopus
  10. F. Occhiuto, R. De Pasquale, G. Guglielmo et al., “Effects of phytoestrogenic isoflavones from red clover (Trifolium pratense L.) on experimental osteoporosis,” Phytotherapy Research, vol. 21, no. 2, pp. 130–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. K. H. Lee and E. M. Choi, “Biochanin A stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells,” Biological and Pharmaceutical Bulletin, vol. 28, no. 10, pp. 1948–1953, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Pakalapati, L. Li, N. Gretz, E. Koch, and M. Wink, “Influence of red clover (Trifolium pratense) isoflavones on gene and protein expression profiles in liver of ovariectomized rats,” Phytomedicine, vol. 16, no. 9, pp. 845–855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. M. Young, D. A. Brazeau, and M. E. Morris, “Effects of flavonoids genistein and biochanin A on gene expression and their metabolism in human mammary cells,” Nutrition and Cancer, vol. 57, no. 1, pp. 48–58, 2007. View at Google Scholar · View at Scopus
  14. S. Schrepfer, T. Deuse, T. Münzel, H. Schäfer, W. Braendle, and H. Reichenspurner, “The selective estrogen receptor-β agonist biochanin A shows vasculoprotective effects without uterotrophic activity,” Menopause, vol. 13, no. 3, pp. 489–499, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Escande, A. Pillon, N. Servant et al., “Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta,” Biochemical Pharmacology, vol. 71, no. 10, pp. 1459–1469, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. W. N. Jefferson, E. Padilla-Banks, G. Clark, and R. R. Newbold, “Assessing estrogenic activity of phytochemicals using transcriptional activation and immature mouse uterotrophic responses,” Journal of Chromatography B, vol. 777, no. 1-2, pp. 179–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. W. S. Jee and W. Yao, “Overview: animal models of osteopenia and osteoporosis,” Journal of Musculoskeletal and Neuronal Interactions, vol. 1, no. 3, pp. 193–207, 2001. View at Google Scholar
  18. Y. J. Moon, K. Sagawa, K. Frederick, S. Zhang, and M. E. Morris, “Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats,” AAPS Journal, vol. 8, no. 3, pp. E433–E442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Barnes, “Phyto-oestrogens and osteoporosis: what is a safe dose?” British Journal of Nutrition, vol. 89, no. 1, pp. S101–S108, 2003. View at Google Scholar · View at Scopus
  20. S. J. Su, L. W. Huang, L. S. Pai, H. W. Liu, and K. L. Chang, “Homocysteine at pathophysiologic concentrations activates human monocyte and induces cytokine expression and inhibits macrophage migration inhibitory factor expression,” Nutrition, vol. 21, no. 10, pp. 994–1002, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Udagawa, N. Takahashi, H. Yasuda et al., “Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function,” Endocrinology, vol. 141, no. 9, pp. 3478–3484, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Zou and Z. Bar-Shavit, “Dual modulation of osteoclast differentiation by lipopolysaccharide,” Journal of Bone and Mineral Research, vol. 17, no. 7, pp. 1211–1218, 2002. View at Google Scholar · View at Scopus
  23. Z. Xu, X. S. Min, Z. M. Dong, Y. W. Li, and X. L. Zha, “TGF-β1 -promoted epithelial-to-mesenchymal transformation and cell adhesion contribute to TGF-β1 -enhanced cell migration in SMMC-7721 cells,” Cell Research, vol. 13, no. 5, pp. 343–350, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. C. G. Bellows, J. E. Aubin, H. N. M. Heersche, and M. E. Antosz, “Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations,” Calcified Tissue International, vol. 38, no. 3, pp. 143–154, 1986. View at Google Scholar · View at Scopus
  25. J. S. Mayes and G. H. Watson, “Direct effects of sex steroid hormones on adipose tissues and obesity,” Obesity Reviews, vol. 5, no. 4, pp. 197–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Picard, Y. Deshaies, J. Lalonde et al., “Effects of the estrogen antagonist EM-652.HCl on energy balance and lipid metabolism in ovariectomized rats,” International Journal of Obesity, vol. 24, no. 7, pp. 830–840, 2000. View at Google Scholar · View at Scopus
  27. A. E. Kearns, S. Khosla, and P. J. Kostenuik, “Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease,” Endocrine Reviews, vol. 29, no. 2, pp. 155–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Yoneda, N. Ishimaru, R. Arakaki et al., “Estrogen deficiency accelerates murine autoimmune arthritis associated with receptor activator of nuclear factor-κB ligand-mediated osteoclastogenesis,” Endocrinology, vol. 145, no. 5, pp. 2384–2391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Miyazaki, T. Matsunaga, S. Miyazaki, S. Hokari, and T. Komoda, “Changes in receptor activator of nuclear factor-kappaB, and its ligand, osteoprotegerin, bone-type alkaline phosphatase, and tartrate-resistant acid phosphatase in ovariectomized rats,” Journal of Cellular Biochemistry, vol. 93, no. 3, pp. 503–512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Garcia-Palacios, H. Yeon Chung, S. Jin Choi et al., “Eosinophil chemotactic factor-L (ECF-L) enhances osteoclast formation by increasing in osteoclast precursors expression of LFA-1 and ICAM-1,” Bone, vol. 40, no. 2, pp. 316–322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. C. Santell, Y. C. Chang, M. G. Nair, and W. G. Helferich, “Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hypothalamic/pituitary axis in rats,” Journal of Nutrition, vol. 127, no. 2, pp. 263–269, 1997. View at Google Scholar · View at Scopus
  32. C. Morris, J. Thorpe, L. Ambrosio, and M. Santin, “The soybean isoflavone genistein induces differentiation of MG63 human osteosarcoma osteoblasts,” Journal of Nutrition, vol. 136, no. 5, pp. 1166–1170, 2006. View at Google Scholar · View at Scopus
  33. P. Albertazzi, “Purified phytoestrogens in postmenopausal bone health: is there a role for genistein?” Climacteric, vol. 5, no. 2, pp. 190–196, 2002. View at Google Scholar · View at Scopus
  34. G. G. J. M. Kuiper, J. G. Lemmen, B. Carlsson et al., “Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β,” Endocrinology, vol. 139, no. 10, pp. 4252–4263, 1998. View at Google Scholar · View at Scopus
  35. T. Katagiri and N. Takahashi, “Regulatory mechanisms of osteoblast and osteoclast differentiation,” Oral Diseases, vol. 8, no. 3, pp. 147–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M. H. Zheng, D. J. Wood, and J. M. Papadimitriou, “What's new in the role of cytokines on osteoblast proliferation and differentiation?” Pathology Research and Practice, vol. 188, no. 8, pp. 1104–1121, 1992. View at Google Scholar · View at Scopus
  37. G. A. Rodan, “Introduction to bone biology,” Bone, vol. 13, no. 1, pp. S3–S6, 1992. View at Google Scholar · View at Scopus
  38. R. B. Kimble, A. B. Matayoshi, J. L. Vannice, V. T. Kung, C. Williams, and R. Pacifici, “Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period,” Endocrinology, vol. 136, no. 7, pp. 3054–3061, 1995. View at Google Scholar · View at Scopus
  39. H. Kitaura, M. S. Sands, K. Aya et al., “Marrow stromal cells and osteoclast precursors differentially contribute to TNF-α-induced osteoclastogenesis in vivo,” Journal of Immunology, vol. 173, no. 8, pp. 4838–4846, 2004. View at Google Scholar · View at Scopus
  40. Y. Tanaka, “Inflammatory cytokines for osteoclastogenesis,” Nippon Rinsho, vol. 63, no. 9, pp. 1535–1540, 2005. View at Google Scholar · View at Scopus
  41. A. P. Trouvin and V. Goëb, “Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss,” Clinical Interventions in Aging, vol. 5, pp. 345–354, 2010. View at Google Scholar · View at Scopus
  42. Y. Yamamoto, N. Udagawa, S. Matsuura et al., “Osteoblasts provide a suitable microenvironment for the action of receptor activator of nuclear factor-κB ligand,” Endocrinology, vol. 147, no. 7, pp. 3366–3374, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Luchin, G. Purdom, K. Murphy et al., “The microphthalmia transcription factor regulates expression of the tartrate-resistant acid phosphatase gene during terminal differentiation of osteoclasts,” Journal of Bone and Mineral Research, vol. 15, no. 3, pp. 451–460, 2000. View at Google Scholar · View at Scopus
  44. K. Fuller, B. Kirstein, and T. J. Chambers, “Murine osteoclast formation and function: differential regulation by humoral agents,” Endocrinology, vol. 147, no. 4, pp. 1979–1985, 2006. View at Publisher · View at Google Scholar · View at Scopus