Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 597067, 12 pages
http://dx.doi.org/10.1155/2013/597067
Research Article

Validation of the Antidiabetic and Hypolipidemic Effects of Hawthorn by Assessment of Gluconeogenesis and Lipogenesis Related Genes and AMP-Activated Protein Kinase Phosphorylation

1Graduate Institute of Pharmaceutical Science and Technology, College of Health Science, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Beitun District, Taichung City 40601, Taiwan
2Department of Internal Medicine, Fong-Yuan Hospital, Department of Health, Executive Yuan, No. 100, An-Kan Road, Fongyuan District, Taichung City 42055, Taiwan
3Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91, Hsueh-Shih Road, Taichung City 40402, Taiwan

Received 24 May 2012; Accepted 20 February 2013

Academic Editor: Hyung-In Moon

Copyright © 2013 Chun-Ching Shih et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Reaven and A. Laws, “Insulin resistance, compensatory hyperinsulinemia, and coronary heart disease,” Diabetologia, vol. 37, no. 4, part 2, pp. 948–952, 1994. View at Google Scholar
  2. D. G. Gardner and D. Shoback, “Pancreatic hormones and diabetes mellitus,” in Greenspan’s Basic and Clinical Endocrinology, Chapter 17, McGraw-Hill Medical, New York, NY, USA, 9th edition, 2011. View at Google Scholar
  3. C. Y. Chu, M. J. Lee, C. L. Liao, W. L. Lin, Y. F. Yin, and T. H. Tseng, “Inhibitory effect of hot-water extract from dried fruit of crataegus pinnatifida on Low-Density Lipoprotein (LDL) oxidation in cell and cell-free systems,” Journal of Agricultural and Food Chemistry, vol. 51, no. 26, pp. 7583–7588, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Chang, Z. Zuo, F. Harrison, and M. S. S. Chow, “Hawthorn- an overview of chemical, pharmacological and clinical studies,” Journal of Clinical Pharmacology, vol. 42, no. 6, pp. 605–612, 2002. View at Google Scholar
  5. B. Yang and P. Liu, “Composition and health effects of phenolic compounds in hawthorn (Crataegus spp.) of different origins,” Journal of the Science of Food Agriculture, vol. 92, no. 8, pp. 1578–1590, 2012. View at Google Scholar
  6. Y. Lin, M. A. Vermeer, and E. A. Trautwein, “Triterpenic acids present in hawthorn lower plasma cholesterol by inhibiting intestinal ACAT activity in hamsters,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 801272, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Jurikova, J. Sochor, O. Rop et al., “Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida BUNGE) fruits,” Molecules, vol. 17, no. 2, pp. 14490–14509, 2012. View at Google Scholar
  8. A. Sokol-Letowska, J. Oszmianski, and A. Wojdylo, “Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap,” Food Chemistry, vol. 103, no. 3, pp. 853–859, 2007. View at Google Scholar
  9. T. Cui, J. Z. Li, H. Kayahara, L. Ma, L. X. Wu, and K. Nakamura, “Quantification of the polyphenols and triterpene acids in Chinese hawthorn fruit by high-performance liquid chromatography,” Journal of Agricultural and Food Chemistry, vol. 54, no. 13, pp. 4574–4581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. J. Kim, S. K. Kim, W. S. Shim et al., “Rosiglitazone improves insulin sensitivity with increased serum leptin levels in patients with type 2 diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 81, no. 1, pp. 42–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Harrity, D. Farrelly, A. Tieman, C. Chu, L. Kunselman, and N. Hariharan, “Muraglitazar, a novel dual (α/γ) peroxisome proliferator activated receptor activator, improves diabetes and other metabolic abnormalities and preserves β-cell function in db/db mice,” Diabetes, vol. 55, no. 1, pp. 240–248, 2006. View at Google Scholar
  12. S. Yu, K. Matsusue, P. Kashireddy et al., “Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 498–505, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Yamauchi, J. Kamon, K. Murakami, K. Motozima, K. Komeda, and T. Kadowaki, “The mechanism by which both heterzygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance,” Journal of Biological Chemistry, vol. 276, no. 44, pp. 41245–41254, 2001. View at Google Scholar
  14. R. A. K. Srivastava, R. Jahagirdar, S. Azhar, S. Sharma, and C. L. Bisgaier, “Peroxisome proliferator-activated receptor-α selective ligand reduces adiposity, improves insulin sensitivity and inhibits atherosclerosis in LDL receptor-deficient mice,” Molecular and Cellular Biochemistry, vol. 285, no. 1-2, pp. 35–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. E. Petro, J. Cotter, D. A. Cooper, J. C. Peters, S. J. Surwit, and R. S. Surwit, “Fat, carbohydrate, and calories in the development of diabetes and obesity in the C57BL/6J mouse,” Metabolism, vol. 53, no. 4, pp. 454–457, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Viollet, L. Lantier, J. Devin-Leclerc, S. Hebrard, C. Amouyal, R. Mounier et al., “Targeting the AMPK pathway for the treatment of type 2 diabetes,” Frontiers in Bioscience, vol. 14, pp. 3380–3400, 2009. View at Google Scholar
  17. S. C. Stein, A. Woods, N. A. Jones, M. D. Davison, and D. Carling, “The regulation of AMP-activated protein kinase by phosphorylation,” Biochemistry Journal, vol. 345, part 3, pp. 437–443, 2000. View at Google Scholar
  18. H. Shimano, “Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes,” Progress in Lipid Research, vol. 40, no. 6, pp. 439–452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Smith, A. Witkowski, and A. K. Joshi, “Structural and functional organization of the animal fatty acid synthase,” Progress in Lipid Research, vol. 42, no. 4, pp. 289–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. R. S. Surwit, M. N. Feinglos, J. Rodin et al., “Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice,” Metabolism, vol. 44, no. 5, pp. 645–654, 1995. View at Google Scholar · View at Scopus
  21. Q. W. Shen, C. S. Jones, N. Kalchayanand, M. J. Zhu, and M. J. Du, “Effect of dietary α-lipoic acid on growth, body composition, muscle pH, and AMP-activated protein kinase phosphorylation in mice,” Journal of Animal Science, vol. 83, no. 11, pp. 2611–2617, 2005. View at Google Scholar · View at Scopus
  22. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Chaput, R. Saladin, M. Silvestre, and A. D. Edgar, “Fenofibrate and rosiglitazone lower serum triglycerides with opposing effects on body weight,” Biochemical and Biophysical Research Communications, vol. 271, no. 2, pp. 445–450, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Delarue and C. Magnan, “Free fatty acids and insulin resistance,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 2, pp. 142–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. H. Kuo, C. H. Yeh, P. C. Shieh, K. C. Cheng, F. A. Chen, and J. T. Cheng, “Effect of ShanZha, a Chinese herbal product, on obesity and dyslipidemia in hamsters receiving high-fat diet,” Journal of Ethnopharmacology, vol. 124, no. 3, pp. 544–550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Sun, S. Liu, S. Ferguson et al., “Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice,” Journal of Biological Chemistry, vol. 277, no. 26, pp. 23301–23307, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. R. M. O'Brien, R. L. Printz, N. Halmi, J. J. Tiesinga, and D. K. Granner, “Structural and functional analysis of the human phosphoenolpyruvate carboxykinase gene promoter,” Biochimica et Biophysica Acta, vol. 1264, no. 3, pp. 284–288, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Brusq, N. Ancellin, P. Grondin et al., “Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine,” Journal of Lipid Research, vol. 47, no. 6, pp. 1281–1288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. B. Kahn, T. Alquier, D. Carling, and D. G. Hardie, “AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism,” Cell Metabolism, vol. 1, no. 1, pp. 15–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Wu, Y. Xie, R. F. Morrison, N. L. R. Bucher, and S. R. Farmer, “PPARγ induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPα during the conversion of 3T3 fibroblasts into adipocytes,” Journal of Clinical Investigation, vol. 101, no. 1, pp. 22–32, 1998. View at Google Scholar · View at Scopus
  31. C. Nugent, J. B. Prins, J. P. Whitehead, J. M. Wentworth, V. K. K. Chatterjee, and S. O'Rahilly, “Arachidonic acid stimulates glucose uptake in 3T3-L1 adipocytes by increasing GLUT1 and GLUT4 levels at the plasma membrane: evidence for involvement of lipoxygenase metabolites and peroxisome proliferator-activated receptor γ,” Journal of Biological Chemistry, vol. 276, no. 12, pp. 9149–9157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Shimano, N. Yahagi, M. Amemiya-Kudo et al., “Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes,” Journal of Biological Chemistry, vol. 274, no. 50, pp. 35832–35839, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. D. D. Patel, B. L. Knight, D. Wiggins, S. M. Humphreys, and G. F. Gibbons, “Disturbances in the normal regulation of SREBP-sensitive genes in PPAR alpha-deficient mice,” Journal of Lipid Reserch, vol. 42, no. 3, pp. 328–337, 2001. View at Google Scholar
  34. M. Foretz, D. Carling, C. Guichard, P. Ferre, and F. Foufelle, “Amp-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes,” Journal of Biological Chemistry, vol. 273, no. 24, pp. 14767–14771, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. D. M. Muoio, K. Seefeld, L. A. Witters, and R. A. Coleman, “AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target,” Biochemical Journal, vol. 338, no. 3, pp. 783–791, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Zhou, R. Myers, and Y. Li, “Role of AMP-activated protein kinase in mechanism of metformin action,” Journal of Clinical Investigation, vol. 108, no. 8, pp. 1167–1174, 2001. View at Google Scholar
  37. B. Staels, J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, and J. C. Fruchart, “Mechanism of action of fibrates on lipid and lipoprotein metabolism,” Circulation, vol. 98, no. 19, pp. 2088–2093, 1998. View at Google Scholar · View at Scopus
  38. J. Fruebis, T. S. Tsao, S. Javorschi et al., “Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 2005–2010, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Zeng, H. Liao, Y. Liu et al., “Sterol-responsive Element-binding Protein (SREBP) 2 down-regulates ATP-binding cassette transporter A1 in vascular endothelial cells: a novel role of SREBP in regulating cholesterol metabolism,” Journal of Biological Chemistry, vol. 279, no. 47, pp. 48801–48807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Staels and J. C. Fruchart, “Therapeutic roles of peroxisome proliferator-activated receptor agonists,” Diabetes, vol. 54, no. 8, pp. 2460–2470, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. D. J. Gordon, J. L. Probstfield, and R. J. Garrison, “High-density lipoprotein cholesterol and cardiovascular disease: four prospective American studies,” Circulation, vol. 79, no. 1, pp. 8–15, 1989. View at Google Scholar
  42. T. L. Eggerman, J. M. Hoeg, M. S. Meng, A. Tombragel, D. Bojanovski, and H. B. Brewer Jr., “Differential tissue-specific expression of human apoA-I and apoA-II,” Journal of Lipid Research, vol. 32, no. 5, pp. 821–828, 1991. View at Google Scholar · View at Scopus
  43. B. M. Spiegelman and J. S. Flier, “Obesity and the regulation of energy balance,” Cell, vol. 104, no. 4, pp. 531–543, 2001. View at Google Scholar
  44. P. Trayhurn and J. H. Beattie, “Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ,” Proceedings of the Nutrition Society, vol. 60, no. 3, pp. 329–339, 2001. View at Google Scholar · View at Scopus
  45. K. Frayn, “Adipose tissue as a buffer for daily lipid flux,” Diabetologia, vol. 45, no. 9, pp. 1201–1210, 2002. View at Publisher · View at Google Scholar · View at Scopus