Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 617459, 14 pages
http://dx.doi.org/10.1155/2013/617459
Review Article

Traditional Medicines in Africa: An Appraisal of Ten Potent African Medicinal Plants

Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius

Received 23 May 2013; Revised 27 September 2013; Accepted 10 October 2013

Academic Editor: John R. S. Tabuti

Copyright © 2013 M. Fawzi Mahomoodally. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, Fact sheet N°134, 2008, http://www.who.int/mediacentre/factsheets/2003/fs134/en/.
  2. A. Gurib-Fakim, “Medicinal plants: traditions of yesterday and drugs of tomorrow,” Molecular Aspects of Medicine, vol. 27, no. 1, pp. 1–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Chintamunnee and M. F. Mahomoodally, “Herbal medicine commonly used against infectious diseases in the tropical island of Mauritius,” Journal of Herbal Medicine, vol. 2, pp. 113–125, 2012. View at Google Scholar
  4. H. Nunkoo and M. F. Mahomoodally, “Ethnopharmacological survey of native remedies commonly used against infectious diseases in the tropical island of Mauritius,” Journal of Ethnopharmacology, vol. 143, no. 2, pp. 548–564, 2012. View at Google Scholar
  5. S. Shohawon and M. F. Mahomoodally, “Complementary and alternative medicine use among Mauritian women,” Complementary Therapies in Clinical Practice, vol. 19, no. 1, pp. 36–43, 2013. View at Google Scholar
  6. Aone Mokaila, 2001, http://www.blackherbals.com/atcNewsletter913.pdf.
  7. A. Gurib-Fakim and M. F. Mahomoodally, “African flora as potential sources of medicinal plants: towards the chemotherapy of major parasitic and other infectious diseases- a review,” Jordan Journal of Biological Sciences, vol. 6, pp. 77–84, 2013. View at Google Scholar
  8. A. Gurib-Fakim, T. Brendler, L. D. Phillips, and L. N. Eloff, Green Gold—Success Stories Using Southern African Plant Species, AAMPS Publishing, Mauritius, 2010.
  9. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 727–747, 2004. View at Google Scholar · View at Scopus
  10. B. M. Abegaz, B. T. Ngadjui, G. N. Folefoc et al., “Prenylated flavonoids, monoterpenoid furanocoumarins and other constituents from the twigs of Dorstenia elliptica (Moraceae),” Phytochemistry, vol. 65, no. 2, pp. 221–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. N. R. Farnsworth, O. Akerele, A. S. Bingel, D. D. Soejarto, and Z. Guo, “Medicinal plants in therapy,” Bulletin of the World Health Organization, vol. 63, no. 6, pp. 965–981, 1985. View at Google Scholar · View at Scopus
  12. Association of African Medicinal Plants Standards (AAMPS), http://www.aamps.org/.
  13. S. E. Atawodi, “Antioxidant potential of African medicinal plants,” African Journal of Biotechnology, vol. 4, no. 2, pp. 128–133, 2005. View at Google Scholar · View at Scopus
  14. S. O. Okoro, A. H. Kawo, and A. H. Arzai, “Phytochemical screening, antibacterial and toxicological activities of Acacia senegal extracts,” Bayero Journal of Pure and Applied Sciences, vol. 5, no. 1, pp. 163–1170, 2011. View at Google Scholar
  15. R. Jain, P. Sharma, T. Bhagchandani, and S. C. Jain, “Phytochemical investigation and antimicrobial activity of Acacia senegal root heartwood,” Journal Pharmaceutical Research, vol. 5, pp. 4934–4938, 2012. View at Google Scholar
  16. A. Gurib-Fakim and M. J. Kasilo, Promoting African Medicinal Plants through an African Herbal Pharmacopoeia. Special Issue 14: Decade of African Traditional Medicine, 2001–2010.
  17. B. S. Aliyu, Common Ethnomedicinal Plants of the Semiarid Regions of West Africa, Triumph Publishing, Kano, Nigeria, 2006.
  18. S. O. Okoro, A. H. Kawo, and A. H. Arzai, “Phytochemical screening, antibacterial and toxicological activities of Acacia senegal extracts,” Bayero Journal of Pure and Applied Sciences, vol. 5, no. 1, pp. 163–170, 2011. View at Google Scholar
  19. T. Brendler, L. N. Eloff, A. Gurib-Fakim, and L. D. Phillips, African Herbal Pharmacopeia, AAMPS Publishing, Mauritius, 2010.
  20. B.-E. van Wyk, “A broad review of commercially important southern African medicinal plants,” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 342–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. B. E. Van Wyk and M. Wink, Medicinal Plants of the World: An Illustrated Scientific Guide to important Medicinal Plants and Their Uses, Briza Publications, Pretoria, South Africa, 2004.
  22. Y. Jia, G. Zhao, and J. Jia, “Preliminary evaluation: the effects of Aloe ferox Miller and Aloe arborescens Miller on wound healing,” Journal of Ethnopharmacology, vol. 120, no. 2, pp. 181–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Chen, B.-E. Van Wyk, I. Vermaak, and A. M. Viljoen, “Cape aloes—a review of the phytochemistry, pharmacology and commercialisation of Aloe ferox,” Phytochemistry Letters, vol. 5, no. 1, pp. 1–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Melin, A bitter pill to swallow: a case study of the trade & harvest of Aloe ferox in the Eastern Cape, South Africa [M.S. thesis], Imperial College, 2009.
  25. B. E. Van Wyk and N. Gericke, People's Plants: A Guide to Useful Plants of Southern Africa, Briza Publications, Pretoria, South Africa, 2000.
  26. B.-E. van Wyk, “A broad review of commercially important southern African medicinal plants,” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 342–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. B. E. Van Wyk and G. F. Smith, Guide to the Aloes of South Africa, Briza Publications, Pretoria, South Africa, 1996.
  28. B. E. Van Wyk and G. F. Smith, Guide to the Aloes of South Africa, Briza Publications, Pretoria, South Africa, 2004.
  29. B. E. Van Wyk, B. Van Oudtshoorn, and N. Gericke, Medicinal Plants of South Africa, Briza Publications, Pretoria, South Africa, 2nd edition, 2009.
  30. B.-E. Van Wijk, M. C. B. Van Rheede Van Oudtshoorn, and G. F. Smith, “Geographical variation in the major compounds of Aloe ferox leaf exudate,” Planta Medica, vol. 61, no. 3, pp. 250–253, 1995. View at Google Scholar · View at Scopus
  31. B. E. Van Wyk, A. Yenesew, and E. Dagne, “Chemotaxonomic survey of anthraquinones and pre-anthraquinones in roots of Aloe species,” Biochemical Systematics and Ecology, vol. 23, no. 3, pp. 267–275, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. T. L. Du, F. H. Van Der Westhuizen, and L. Botes, “Aloe ferox leaf gel phytochemical content, antioxidant capacity, and possible health benefits,” Journal of Agricultural and Food Chemistry, vol. 55, no. 17, pp. 6891–6896, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. F. A. Andersen, “Final report on the safety assessment of Aloe andongensis extract, Aloe andongensis leaf juice, Aloe arborescens leaf extract, Aloe arborescens leaf juice, Aloe arborescens leaf protoplasts, Aloe barbadensis flower extract, Aloe barbadensis leaf, Aloe barbadensis leaf extract, Aloe barbadensis leaf juice, Aloe barbadensis leaf polysaccharides, Aloe barbadensis leaf water, Aloe ferox ferox leaf extract,” International Journal of Toxicology, vol. 26, no. 2, pp. 1–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Segal, I. Feuerstein, and A. Danin, “Chemotypes of Artemisia herba-alba in Israel based on their sesquiterpene lactone and essential oil constitution,” Biochemical Systematics and Ecology, vol. 15, no. 4, pp. 411–416, 1987. View at Google Scholar · View at Scopus
  35. A. Ziyyat, A. Legssyer, H. Mekhfi, A. Dassouli, M. Serhrouchni, and W. Benjelloun, “Phytotherapy of hypertension and diabetes in oriental Morocco,” Journal of Ethnopharmacology, vol. 58, no. 1, pp. 45–54, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Tahraoui, J. El-Hilaly, Z. H. Israili, and B. Lyoussi, “Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province),” Journal of Ethnopharmacology, vol. 110, no. 1, pp. 105–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. N.-A. Zeggwagh, O. Farid, J. B. Michel, and M. Eddouks, “Cardiovascular effect of Artemisia herba alba aqueous extract in spontaneously hypertensive rats,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 30, no. 5, pp. 375–381, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Laid, M.-E. F. Hegazy, A. A. Ahmed, K. Ali, D. Belkacemi, and S. Ohta, “Sesquiterpene lactones from Algerian Artemisia herba-alba,” Phytochemistry Letters, vol. 1, no. 2, pp. 85–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Friedman, Z. Yaniv, A. Dafni, and D. Palewitch, “A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel,” Journal of Ethnopharmacology, vol. 16, no. 2-3, pp. 275–287, 1986. View at Google Scholar · View at Scopus
  40. F. Fenardji, M. Klur, C. Fourlon, and R. Ferrando, “White Artemisia (Artemisia herba alba L.),” Revue d"elevage et de medecine veterinaire des pays tropicaux, vol. 27, no. 2, pp. 203–206, 1974. View at Google Scholar · View at Scopus
  41. A. Benmansur, S. A. Taleb-Bendiab, N. Mashev, and G. Vasilev, “Studies on the chemical composition of Artemisia (Artemisia herba-alba),” Bolgarskoi Akademii Nauk, vol. 43, no. 8, pp. 65–67, 1990. View at Google Scholar
  42. A. E.-H. H. Mohamed, M. A. El-Sayed, M. E. Hegazy, S. E. Helaly, A. M. Esmail, and N. S. Mohamed, “Chemical constituents and biological activities of Artemisia herba-alba,” Records of Natural Products, vol. 4, no. 1, pp. 1–25, 2010. View at Google Scholar · View at Scopus
  43. R. Belhattab, L. Amor, J. G. Barroso, L. G. Pedro, and A. C. Figueiredo, “Essential oil from Artemisia herba-albaAsso grown wild in Algeria: variability assessment and comparison with an updated literature survey,” Arabian Journal of Chemistry, vol. 57, no. 4, pp. 603–619, 2012. View at Google Scholar
  44. T. Dob and T. Benabdelkader, “Chemical composition of the essential oil of Artemisia herba-albaAsso grown in Algeria,” Journal of Essential Oil Research, vol. 18, no. 6, pp. 685–690, 2006. View at Google Scholar · View at Scopus
  45. E. Joubert and D. de Beer, “Rooibos (Aspalathus linearis) beyond the farm gate: from herbal tea to potential phytopharmaceutical,” South African Journal of Botany, vol. 77, no. 4, pp. 869–886, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. F. R. Van Heerden, B.-E. Van Wyk, A. M. Viljoen, and P. A. Steenkamp, “Phenolic variation in wild populations of Aspalathus linearis (rooibos tea),” Biochemical Systematics and Ecology, vol. 31, no. 8, pp. 885–895, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. B. E. Van Wyk and G. H. Verdoorn, “Alkaloids of the genera Aspalathus, Rafnia and Wiborgia (Fabaceae-Crotalarieae),” South African Journal of Botany, vol. 55, pp. 520–522, 1989. View at Google Scholar
  48. A. Kawano, H. Nakamura, S.-I. Hata, M. Minakawa, Y. Miura, and K. Yagasaki, “Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice,” Phytomedicine, vol. 16, no. 5, pp. 437–443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. L. Marnewick, F. H. van der Westhuizen, E. Joubert, S. Swanevelder, P. Swart, and W. C. A. Gelderblom, “Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver,” Food and Chemical Toxicology, vol. 47, no. 1, pp. 220–229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Kreuz, E. Joubert, K.-H. Waldmann, and W. Ternes, “Aspalathin, a flavonoid in Aspalathus linearis (rooibos), is absorbed by pig intestine as a C-glycoside,” Nutrition Research, vol. 28, no. 10, pp. 690–701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. A. H. Gilani, A.-U. Khan, M. N. Ghayur, S. F. Ali, and J. W. Herzig, “Antispasmodic effects of Rooibos tea (Aspalathus linearis) is mediated predominantly through K+-channel activation,” Basic and Clinical Pharmacology and Toxicology, vol. 99, no. 5, pp. 365–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. A.-U. Khan and A. H. Gilani, “Selective bronchodilatory effect of Rooibos tea (Aspalathus linearis) and its flavonoid, chrysoeriol,” European Journal of Nutrition, vol. 45, no. 8, pp. 463–469, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Fukasawa, A. Kanda, and S. Hara, “Anti-oxidative effects of rooibos tea extract on autoxidation and thermal oxidation of lipids,” Journal of Oleo Science, vol. 58, no. 6, pp. 275–283, 2009. View at Google Scholar · View at Scopus
  54. E. Joubert, “Effect of batch extraction conditions on yield of soluble solids from rooibos tea,” International Journal of Food Science and Technology, vol. 23, pp. 43–47, 1988. View at Google Scholar
  55. E. Joubert, “Chemical and sensory analyses of spray- and freeze-dried extracts of rooibos tea (Aspalathus linearis),” International Journal of Food Science and Technology, vol. 25, pp. 344–349, 1990. View at Google Scholar
  56. E. Joubert, “Effect of batch extraction conditions on yield of polyphenols from rooibos tea (Aspalathus linearis),” International Journal of Food Science and Technology, vol. 25, pp. 339–343, 1990. View at Google Scholar
  57. E. Joubert, “Tristimulus colour measurement of rooibos tea extracts as an objective colour quality parameter,” International Journal of Food Science and Technology, vol. 30, pp. 783–792, 1995. View at Google Scholar
  58. E. Joubert, M. Manley, and M. Botha, “Evaluation of spectrophotometric methods for screening of green rooibos (Aspalathus linearis) and green honeybush (Cyclopia genistoides) extracts for high levels of bio-active compounds,” Phytochemical Analysis, vol. 19, no. 2, pp. 169–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Joubert and R. Müller, “A small-scale rotary fermentation unit for rooibos tea,” International Journal of Food Science and Technology, vol. 32, no. 2, pp. 135–139, 1997. View at Google Scholar · View at Scopus
  60. E. Joubert, F. Otto, S. Grüner, and B. Weinreich, “Reversed-phase HPLC determination of mangiferin, isomangiferin and hesperidin in Cyclopia and the effect of harvesting date on the phenolic composition of C. genistoides,” European Food Research and Technology, vol. 216, no. 3, pp. 270–273, 2003. View at Google Scholar · View at Scopus
  61. E. Joubert, E. S. Richards, J. D. Van Der Merwe, D. De Beer, M. Manley, and W. C. A. Gelderblom, “Effect of species variation and processing on phenolic composition and in vitro antioxidant activity of aqueous extracts of Cyclopia spp. (Honeybush tea),” Journal of Agricultural and Food Chemistry, vol. 56, no. 3, pp. 954–963, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. E. Joubert and H. Schulz, “Production and quality aspects of rooibos tea and related products. A review,” Journal of Applied Botany and Food Quality, vol. 80, no. 2, pp. 138–144, 2006. View at Google Scholar · View at Scopus
  63. E. Joubert, J. D. Van der Merwe, W. C. A. Gelderblom, and M. Manley, “Implication of CYP450 stabilization in the evaluation of in vitro antimutagenicity of the herbal teas, Cyclopia spp. (honeybush) and Aspalathus linearis (rooibos) and selected polyphenols,” in Proceedings of the Polyphenols Communications 2006: Abstracts of 23rd International Conference on Polyphenols, pp. 505–506, Manitoba, Canada, 2006.
  64. E. Joubert, P. Winterton, T. J. Britz, and D. Ferreira, “Superoxide anion and α, α-diphenyl-β-picrylhydrazyl radical scavenging capacity of rooibos (Aspalathus linearis) aqueous extracts, crude phenolic fractions, tannin and flavonoids,” Food Research International, vol. 37, no. 2, pp. 133–138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Joubert, P. Winterton, T. J. Britz, and W. C. A. Gelderblom, “Antioxidant and pro-oxidant activities of aqueous extracts and crude polyphenolic fractions of rooibos (Aspalathus linearis),” Journal of Agricultural and Food Chemistry, vol. 53, no. 26, pp. 10260–10267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Mose Larsen, S. J. Fey, J. Louw, and L. Joubert, “An anti-diabetic extract of Rooibos,” PCT Application PCT/EP2008/052861 (WO, 2008/110551 A1), 2008. View at Google Scholar
  67. H.-K. Na, K. S. Mossanda, J.-Y. Lee, and Y.-J. Surh, “Inhibition of phorbol ester-induced COX-2 expression by some edible African plants,” BioFactors, vol. 21, no. 1–4, pp. 149–153, 2004. View at Google Scholar · View at Scopus
  68. F. Bruno and W. Dimpfel, “Aspalathin-like dihydrochalcone, extracts from unfermented rooibos and process for preparation,” PCT Patent Application PCT/EP2008/007279 (WO/2009/052895), 2009. View at Google Scholar
  69. B. Brinkhaus, M. Lindner, D. Schuppan, and E. G. Hahn, “Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica,” Phytomedicine, vol. 7, no. 5, pp. 427–448, 2000. View at Google Scholar · View at Scopus
  70. W.-J. Kim, J. Kim, B. Veriansyah et al., “Extraction of bioactive components from Centella asiatica using subcritical water,” Journal of Supercritical Fluids, vol. 48, no. 3, pp. 211–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Shukla, A. M. Rasik, G. K. Jain, R. Shankar, D. K. Kulshrestha, and B. N. Dhawan, “In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica,” Journal of Ethnopharmacology, vol. 65, no. 1, pp. 1–11, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Lee, E. Jung, Y. Kim et al., “Asiaticoside induces human collagen I synthesis through TGFβ receptor I kinase (TβRI kinase)-independent Smad signaling,” Planta Medica, vol. 72, no. 4, pp. 324–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. M. T. Thomas, R. Kurup, A. J. Johnson et al., “Elite genotypes/chemotypes, with high contents of madecassoside and asiaticoside, from sixty accessions of Centella asiatica of south India and the Andaman Islands: for cultivation and utility in cosmetic and herbal drug applications,” Industrial Crops and Products, vol. 32, no. 3, pp. 545–550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. H. S. Long, M. A. Stander, and B. E. Van Wyk, “Notes on the occurrence and significance of triterpenoids (asiaticoside and related compounds) and caffeoylquinic acids in Centella species,” South African Journal of Botany, vol. 82, pp. 53–59, 2012. View at Google Scholar
  75. G. I. Stafford, M. E. Pedersen, J. van Staden, and A. K. Jäger, “Review on plants with CNS-effects used in traditional South African medicine against mental diseases,” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 513–537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Gurib-Fakim, M. Sewraj, J. Gueho, and E. Dulloo, “Medicalethnobotany of some weeds of Mauritius and Rodrigues,” Journal of Ethnopharmacology, vol. 39, no. 3, pp. 175–185, 1993. View at Google Scholar · View at Scopus
  77. Y. K. Gupta, M. H. Veerendra Kumar, and A. K. Srivastava, “Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats,” Pharmacology Biochemistry and Behavior, vol. 74, no. 3, pp. 579–585, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. T. K. Chatterjee, A. Chakraborty, M. Pathak, and G. C. Sengupta, “Effects of plant extract Centella asiatica (Linn.) on cold restraint stress ulcer in rats,” Indian Journal of Experimental Biology, vol. 30, no. 10, pp. 889–891, 1992. View at Google Scholar · View at Scopus
  79. M. Ramanathan, S. Sivakumar, P. R. Anandvijayakumar, C. Saravanababu, and P. R. Pandian, “Neuroprotective evaluation of standardized extract of centella asciatica in monosodium glutamate treated rats,” Indian Journal of Experimental Biology, vol. 45, no. 5, pp. 425–431, 2007. View at Google Scholar · View at Scopus
  80. D. M. Pereira, J. Faria, L. Gaspar et al., “Exploiting Catharanthus roseus roots: source of antioxidants,” Food Chemistry, vol. 121, no. 1, pp. 56–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Gurib-Fakim, J. Gueho, and M. D. Sewraj, Plantes Medicinales de Maurice, Editions Le Printemps, Rose Hill, Mauritius, 1995.
  82. F. Ferreres, D. M. Pereira, P. Valentão, P. B. Andrade, R. M. Seabra, and M. Sottomayor, “New phenolic compounds and antioxidant potential of Catharanthus roseus,” Journal of Agricultural and Food Chemistry, vol. 56, no. 21, pp. 9967–9974, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. D. M. Pereira, F. Ferreres, J. Oliveira, P. Valentão, P. B. Andrade, and M. Sottomayor, “Targeted metabolite analysis of Catharanthus roseus and its biological potential,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1349–1354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. R. van der Heijden, D. I. Jacobs, W. Snoeijer, D. Hallard, and R. Verpoorte, “The Catharanthus alkaloids: pharmacognosy and biotechnology,” Current Medicinal Chemistry, vol. 11, no. 5, pp. 607–628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. J. K. Grover, S. Yadav, and V. Vats, “Medicinal plants of India with anti-diabetic potential,” Journal of Ethnopharmacology, vol. 81, no. 1, pp. 81–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Bowie, “Sketches of the botany of South Africa,” South African Quarterly Journal, pp. 27–36, 1830. View at Google Scholar
  87. J. M. Watt and M. G. Breyer-Brandwijk, Medicinal and Poisonous Plants of Southern and Eastern Africa, E&S Livingstone, Edinburgh, UK, 2nd edition, 1962.
  88. R. Marloth, The Flora of South Africa with Synoptical Tables of the Genera of the Higher Plants, Darter Bros & Co, Cape Town, South Africa, 1925.
  89. B. Rood, Uit Die Veldapteek, Tafelberg-Uitgewers Bpk, Cape Town, South Africa, 1994.
  90. A. Kokotkiewicz, M. Luczkiewicz, J. Pawlowska et al., “Isolation of xanthone and benzophenone derivatives from Cyclopia genistoides (L.) Vent. (honeybush) and their pro-apoptotic activity on synoviocytes from patients with rheumatoid arthritis,” Fitoterapia, vol. 90, pp. 199–208, 2013. View at Google Scholar
  91. M. L. Andersen, E. H. R. Santos, M. D. L. V. Seabra, A. A. B. Da Silva, and S. Tufik, “Evaluation of acute and chronic treatments with Harpagophytum procumbens on Freund's adjuvant-induced arthritis in rats,” Journal of Ethnopharmacology, vol. 91, no. 2-3, pp. 325–330, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Mncwangi, W. Chen, I. Vermaak, A. M. Viljoen, and N. Gericke, “Devil’s Claw-A review of the ethnobotany, Phytochemistry and biological activity of Harpagophytum procumbens,” Journal of Ethnopharmacology, vol. 143, pp. 755–771, 2012. View at Google Scholar
  93. S. Chrubasik and P. R. Bradley, “Addendum to the ESCOP monograph on Harpagophytum procumbens (multiple letter),” Phytomedicine, vol. 11, no. 7-8, pp. 691–695, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Wegener and N.-P. Lüpke, “Treatment of Patients with Arthrosis of Hip or Knee with an Aqueous Extract of Devil's Claw (Harpagophytum procumbens DC.),” Phytotherapy Research, vol. 17, no. 10, pp. 1165–1172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. E. Ernst and S. Chrubasik, “Phyto-anti-inflammatories: a systemic review of randomized, placebo- controlled, double-blind trials,” Rheumatic Disease Clinics of North America, vol. 26, no. 1, pp. 13–27, 2000. View at Google Scholar · View at Scopus
  96. P. Wenzel and T. Wegener, “Harpagophytum procumbens—a plant antirheumatic agent,” Deutsche Apotheker Zeitung, vol. 135, no. 13, pp. 15–28, 1995. View at Google Scholar · View at Scopus
  97. N. Ahmad, M. R. Hassan, H. Halder, and K. S. Bennoor, “Effect of Momordica charantia (Karolla) extracts on fasting and postprandial serum glucose levels in NIDDM patients,” Bangladesh Medical Research Council Bulletin, vol. 25, no. 1, pp. 11–13, 1999. View at Google Scholar · View at Scopus
  98. Y. Kimura, Y. Minami, T. Tokuda, S. Nakajima, S. Takagi, and G. Funatsu, “Primary structures of N-linked oligosaccharides of momordin-a, a ribosome-inactivating protein from Momordica charantia seeds,” Agricultural and Biological Chemistry, vol. 55, no. 8, pp. 2031–2036, 1991. View at Google Scholar · View at Scopus
  99. M. F. Mahomoodally, A. Gurib-Fakim, and A. H. Subratty, “A kinetic model for in vitro intestinal uptake of l-tyrosine and d(+)-glucose across rat everted gut sacs in the presence of Momordica charantia, a medicinal plant used in traditional medicine against diabetes mellitus,” Journal of Cell and Molecular Biology, vol. 3, pp. 39–44, 2004. View at Google Scholar
  100. H. Matsuda, Y. Li, T. Murakami, N. Matsumura, J. Yamahara, and M. Yoshikawa, “Antidiabetic principles of natural medicines. III. Structure-related inhibitory activity and action mode of oleanolic acid glycosides on hypoglycemic activity,” Chemical and Pharmaceutical Bulletin, vol. 46, no. 9, pp. 1399–1403, 1998. View at Google Scholar · View at Scopus
  101. H. Matsuura, C. Asakawa, M. Kurimoto, and J. Mizutani, “α-Glucosidase inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifola frondosa,” Bioscience, Biotechnology and Biochemistry, vol. 66, no. 7, pp. 1576–1578, 2002. View at Google Scholar · View at Scopus
  102. P. Khanna, S. C. Jain, A. Panagariya, and V. P. Dixit, “Hypoglycemic activity of polypeptide-p from a plant source,” Journal of Natural Products, vol. 44, no. 6, pp. 648–655, 1981. View at Google Scholar · View at Scopus
  103. M. S. Akhtar, M. A. Athar, and M. Yaqub, “Effect of Momordica charantia on blood glucose level of normal and alloxan-diabetic rabbits,” Planta Medica, vol. 42, no. 3, pp. 205–212, 1981. View at Google Scholar · View at Scopus
  104. D. K. Dubey, A. R. Biswas, J. S. Bapna, and S. C. Pradhan, “Hypoglycaemic and antihyperglycaemic effects of Momordica charantia seed extracts in albino rats,” Fitoterapia, vol. 58, no. 6, pp. 387–390, 1987. View at Google Scholar · View at Scopus
  105. E. H. Karunanayake, J. Welihinda, S. R. Sirimanne, and G. Sinnadorai, “Oral hypoglycaemic activity of some medicinal plants of Sri Lanka,” Journal of Ethnopharmacology, vol. 11, no. 2, pp. 223–231, 1984. View at Google Scholar · View at Scopus
  106. A. P. Jayasooriya, M. Sakono, C. Yukizaki, M. Kawano, K. Yamamoto, and N. Fukuda, “Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol- enriched diets,” Journal of Ethnopharmacology, vol. 72, no. 1-2, pp. 331–336, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Sarkar, M. Pranava, and R. A. Marita, “Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes,” Pharmacological Research, vol. 33, no. 1, pp. 1–4, 1996. View at Publisher · View at Google Scholar · View at Scopus
  108. E. Yesilada, I. Gurbuz, and H. J. Shibata, “Momordica charantia: an overview,” Journal of Ethnopharmacology, vol. 66, pp. 289–293, 1999. View at Google Scholar
  109. A. Raman and C. Lau, “Antidiabetic properties and phytochemistry of Momordica charantia L., (Cucurbitaceae),” Phytomedicine, vol. 2, pp. 349–362, 1996. View at Google Scholar
  110. B. A. Shibib, L. A. Khan, and R. Rahman, “Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase,” Biochemical Journal, vol. 292, no. 1, pp. 267–270, 1993. View at Google Scholar · View at Scopus
  111. J. Welihinda, G. Avidson, E. Gylte, B. Hellman, and E. Karlson, “The insulin-releasing activity of the tropical plant Momordica charantia,” Acta Biology Medicinal Germany, vol. 41, pp. 1229–1239, 1981. View at Google Scholar
  112. J. Welihinda and E. H. Karunanayake, “Extra-pancreatic effects of Momordica charantia in rats,” Journal of Ethnopharmacology, vol. 17, no. 3, pp. 247–255, 1986. View at Google Scholar · View at Scopus
  113. H. Matsuura, C. Asakawa, M. Kurimoto, and J. Mizutani, “α-Glucosidase inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifola frondosa,” Bioscience, Biotechnology and Biochemistry, vol. 66, no. 7, pp. 1576–1578, 2002. View at Google Scholar · View at Scopus
  114. A. H. Subratty, A. Gurib-Fakim, and F. Mahomoodally, “Bitter melon: an exotic vegetable with medicinal values,” Nutrition and Food Science, vol. 35, no. 3, pp. 143–147, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. M. F. Mahomoodally, A.-G. Fakim, and A. H. Subratty, “Momordica charantia extracts inhibit uptake of monosaccharide and amino acid across rat everted gut sacs in vitro,” Biological and Pharmaceutical Bulletin, vol. 27, no. 2, pp. 216–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. M. F. Mahomoodally, A. Gurib-Fakim, and A. H. Subratty, “Experimental evidence for in vitro fluid transport in the presence of a traditional medicinal fruit extract across rat everted intestinal sacs,” Fundamental and Clinical Pharmacology, vol. 19, no. 1, pp. 87–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. M. F. Mahomoodally, A. Gurib Fakim, and A. H. Subratty, “Stimulatory effects of Antidesma madagascariense on D-glucose, L-tyrosine, fluid and electrolyte transport across rat everted intestine, comparable to insulin action in vitro,” British Journal of Biomedical Science, vol. 63, no. 1, pp. 12–17, 2006. View at Google Scholar · View at Scopus
  118. A. Timmer, J. Günther, G. Rücker, E. Motschall, G. Antes, and W. V. Kern, “Pelargonium sidoides extract for acute respiratory tract infections,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD006323, 2008. View at Google Scholar · View at Scopus
  119. T. B. Agbabiaka, R. Guo, and E. Ernst, “Pelargonium sidoides for acute bronchitis: a systematic review and meta-analysis,” Phytomedicine, vol. 15, no. 5, pp. 378–385, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Conrad, C. Hansmann, I. Engels, F. D. Daschner, and U. Frank, “Extract of Pelargonium sidoides (EPs) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro,” Phytomedicine, vol. 14, no. 1, pp. 46–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Conrad, I. Jung, D. Tioua et al., “Extract of Pelargonium sidoides (EPs) inhibits the interactions of group A-streptococci and host epithelia in vitro,” Phytomedicine, vol. 14, no. 1, pp. 52–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Conrad, H. Kolodziej, and V. Schulz, “Pelargonium sidoides-extract (EPs 7630): registration confirms efficacy and safety,” Wiener Medizinische Wochenschrift, vol. 157, no. 13-14, pp. 331–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Conrad and U. Frank, “Extract of Pelargonium sidoides (EPs 7630) displays anti-infective properties by enhanced phagocytosis and differential modulation of host-bacteria interactions,” Planta Medica, vol. 74, no. 6, pp. 682–685, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Conrad, D. Bauer, C. Hansmann, I. Engels, and U. Frank, “Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro,” Zeitschrift fur Phytotherapie, vol. 29, no. 1, pp. 15–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Conrad, D. Bauer, I. Jung et al., “Extract of Pelargonium sidoides (EPs 7630) inhibits the interactions of group A-streptococci and host epithelia,” Zeitschrift fur Phytotherapie, vol. 29, no. 1, pp. 19–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Brendler and B.-E. van Wyk, “A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae),” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 420–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. O. Kayser, Phenolische Inhaltsstoffe von Pelargonium sidoides DC. und Untersuchungen zur Wirksamkeit der Umcka-Droge (Pelargonium sidoides DC. und Pelargonium reniforme Curt.) [Ph.D. thesis], University of Berlin, 1997.
  128. F. B. Lewu, D. S. Grierson, and A. J. Afolayan, “Extracts from Pelargonium sidoides inhibit the growth of bacteria and fungi,” Pharmaceutical Biology, vol. 44, no. 4, pp. 279–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. F. Daschner, A. Dorfmüller, I. Engels, and U. Frank, “Untersuchungen zum antibakteriellen Wirkmechanismus von EPs7630,” Phytopharmaka und Phytotherapie, Abstract, vol. 15, 2004. View at Google Scholar
  130. N. Wittschier, G. Faller, and A. Hensel, “An extract of Pelargonium sidoides (EPs 7630) inhibits in situ adhesion of Helicobacter pylori to human stomach,” Phytomedicine, vol. 14, no. 4, pp. 285–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. W. Beil and P. Kilian, “EPs, an extract from Pelargonium sidoides roots inhibits adherence of Helicobacter pylori to gastric epithelial cells,” Phytomedicine, vol. 14, no. 1, pp. 5–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. N. Wittschier, C. Lengsfeld, S. Vorthems et al., “Large molecules as anti-adhesive compounds against pathogens,” Journal of Pharmacy and Pharmacology, vol. 59, no. 6, pp. 777–786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. P. Taylor, S. Maalim, and S. Coleman, “The strange story of umckaloabo,” Pharmaceutical Journal, vol. 275, no. 7381, pp. 790–792, 2005. View at Google Scholar · View at Scopus
  134. T. Gödecke, M. Kaloga, and H. Kolodziej, “A phenol glucoside, uncommon coumarins and flavonoids from Pelargonium sidoides DC,” Zeitschrift für Naturforschung, vol. 60, no. 6, pp. 677–682, 2005. View at Google Scholar · View at Scopus
  135. S. P. N. Mativandlela, J. J. M. Meyer, A. A. Hussein, and N. Lall, “Antitubercular activity of compounds isolated from Pelargonium sidoides,” Pharmaceutical Biology, vol. 45, no. 8, pp. 645–650, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. O. Kayser, K. N. Masihi, and A. F. Kiderlen, “Natural products and synthetic compounds as immunomodulators,” Expert Review of Anti-Infective Therapy, vol. 1, no. 2, pp. 319–335, 2003. View at Google Scholar · View at Scopus
  137. H. Kolodziej, “Traditionally used Pelargonium species: chemistry and biological activity of umckaloabo extracts and their constituents,” Current Topics in Phytochemistry, vol. 3, pp. 77–93, 2000. View at Google Scholar
  138. H. Kolodziej, “Fascinating metabolic pools of Pelargonium sidoides and Pelargonium reniforme, traditional and phytomedicinal sources of the herbal medicine Umckaloabo,” Phytomedicine, vol. 14, no. 1, pp. 9–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. E. Koch, H. Hauer, and K. H. Stumpf, Use of Pelargonium sidoides and Pelargonium reniforme root extracts, World Patent WO2006002837 (European Patent EP1651244, United States Patent 20060263448), 2006.
  140. W. R. Sawadogo, M. Schumacher, M. Teiten, M. Dicato, and M. Diederich, “Traditional West African pharmacopeia, plants and derived compounds for cancer therapy,” Biochemical Pharmacology, vol. 84, pp. 1225–1240, 2012. View at Google Scholar
  141. R. Gautam, A. Saklani, and S. M. Jachak, “Indian medicinal plants as a source of antimycobacterial agents,” Journal of Ethnopharmacology, vol. 110, no. 2, pp. 200–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. O. M. J. Kasilo and J. M. Trapsida, “Regulation of traditional medicine in the WHO African region,” The African Health Monitor, vol. 13, pp. 25–31, 2010. View at Google Scholar