Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 627375, 25 pages
http://dx.doi.org/10.1155/2013/627375
Review Article

New Perspectives on How to Discover Drugs from Herbal Medicines: CAM's Outstanding Contribution to Modern Therapeutics

1School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
2College of Pharmacy,University of South Florida, Tampa, FL 33612, USA
3School of basic medicine, Beijing University of Chinese Medicine, Beijing 100102, China
4School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
5Department of Chemistry, Hong Kong Baptist University, Hong Kong
6Department of Applied Biology & Chemical Technology, Hong Kong Polytechnic University, Hong Kong
7Division of Life Science, Hong Kong University of Science & Technology, Hong Kong

Received 16 September 2012; Accepted 29 January 2013

Academic Editor: Hyunsu Bae

Copyright © 2013 Si-Yuan Pan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Wu, D. Atchley, L. Greer, S. Janssen, D. Rosenberg, and J. Sass, “Dosed without prescription: preventing pharmaceutical contamination of our nation's drinking water,” http://docs.nrdc.org/health/files/hea_10012001a.pdf.
  2. C. J. Barden and D. F. Weaver, “The rise of micropharma,” Drug Discovery Today, vol. 15, no. 3-4, pp. 84–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. I. Graul, L. Revel, M. Barrionuevo et al., “The year's new drugs & biologics—2008,” Drug News and Perspectives, vol. 22, no. 1, pp. 7–29, 2009. View at Google Scholar
  4. S. Kuhne, “The future science, buisness and innovation,” http://www.sciencebus.se/Sciencebus/SebastiaanKuhne_files/SEBASTIAAN%20KUHNE.pdf.
  5. B. Sibbald, “Rofecoxib (Vioxx) voluntarily withdrawn from market,” Canadian Medical Association Journal, vol. 171, no. 9, pp. 1027–1028, 2004. View at Google Scholar · View at Scopus
  6. S. Y. Pan, S. H. Gao, S. F. Zhou et al., “New perspectives on complementary and alternative medicine: an overview and alternative therapy,” Alternative Therapies in Health and Medicine, vol. 18, no. 4, pp. 20–36, 2012. View at Google Scholar
  7. L. C. Winslow and D. J. Kroll, “Herbs as medicines,” Archives of Internal Medicine, vol. 158, no. 20, pp. 2192–2199, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Raman and S. Kandula, “Zoopharmacognosy,” http://www.ias.ac.in/resonance/March2008/p245-253.pdf.
  9. S. Krief, A. Jamart, S. Mahé et al., “Clinical and pathologic manifestation of oesophagostomosis in African great apes: does self-medication in wild apes influence disease progression?” Journal of Medical Primatology, vol. 37, no. 4, pp. 188–195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Fowler, Y. Koutsioni, and V. Sommer, “Leaf-swallowing in Nigerian chimpanzees: evidence for assumed self-medication,” Primates, vol. 48, no. 1, pp. 73–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Y. Pan, S. B. Chen, H. G. Dong et al., “New perspectives on Chinese herbal medicine (Zhong-Yao) research and development,” Evidence Based Complementary and Alternative Medicine, vol. 2011, Article ID 403709, 11 pages, 2011. View at Publisher · View at Google Scholar
  12. S. M. He, E. Chan, and S. F. Zhou, “ADME properties of herbal medicines in humans: evidence, challenges andstrategies,” Current Pharmaceutical Design, vol. 17, no. 4, pp. 357–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Chan, M. Tan, J. Xin, S. Sudarsanam, and D. E. Johnson, “Interactions between traditional Chinese medicines and Western therapeutics,” Current Opinion in Drug Discovery and Development, vol. 13, no. 1, pp. 50–65, 2010. View at Google Scholar · View at Scopus
  14. X. W. Chen, K. B. Sneed, S. Y. Pan et al., “Herb-drug interactions and mechanistic and clinical considerations,” Current Medicinal Chemistry, vol. 13, no. 5, pp. 640–651, 2012. View at Google Scholar
  15. X. W. Chen, E. S. Serag, K. B. Sneed et al., “Clinical herbal interactions with conventional drugs: from molecules to maladies,” Current Medicinal Chemistry, vol. 18, no. 31, pp. 4836–4850, 2011. View at Publisher · View at Google Scholar
  16. B. Patwardhan, A. D. B. Vaidya, and M. Chorghade, “Ayurveda and natural products drug discovery,” Current Science, vol. 86, no. 6, pp. 789–799, 2004. View at Google Scholar · View at Scopus
  17. M. Gordaliza, “Terpenyl-purines from the sea,” Marine Drugs, vol. 7, no. 4, pp. 833–849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Maridass and A. John de Britto, “Origins of plant derived medicines,” Ethnobotanical Leaflets, vol. 12, pp. 373–387, 2008. View at Google Scholar
  19. S. Krief, M. T. Martin, P. Grellier, J. Kasenene, and T. Sévenet, “Novel antimalarial compounds isolated in a survey of self-medicative behavior of wild chimpanzees in Uganda,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 8, pp. 3196–3199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. P. Samy, P. N. Pushparaj, and P. Gopalakrishnakone, “A compilation of bioactive compounds from Ayurveda,” Bioinformation, vol. 3, no. 3, pp. 100–110, 2008. View at Publisher · View at Google Scholar
  21. N. R. Farnsworth, “Screening plants for new medicines,” http://www.ciesin.org/docs/002-256c/002-256c.html.
  22. G. Yirga, M. Teferi, and M. Kasaye, “Survey of medicinal plants used to treat human ailments in Hawzen district, Northern Ethiopia,” International Journal of Biodiversity and Conservation, vol. 3, no. 13, pp. 709–714, 2011. View at Google Scholar
  23. S. I. Cameron, R. F. Smith, and K. E. Kierstead, “Linking medicinal/nutraceutical products research with commercialization,” Pharmacetical Biology, vol. 43, no. 5, pp. 425–433, 2005. View at Publisher · View at Google Scholar
  24. Z. L. Deng, “Application of new techniques in the innovative research of Chinese herbal medicine,” Chinese Pharmaceutical, vol. 16, pp. 58–589, 2007 (Chinese). View at Google Scholar
  25. N. Sithranga Boopathy and K. Kathiresan, “Anticancer drugs from marine flora: an overview,” Journal of Oncology, vol. 2010, Article ID 214186, 18 pages, 2010. View at Publisher · View at Google Scholar
  26. N. S. Boopathy and K. Kathiresan, “Anticancer drugs from marine flora: an overview,” Journal of Oncology, vol. 2010, Article ID 214186, 18 pages, 2010. View at Publisher · View at Google Scholar
  27. D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the last 25 years,” Journal of Natural Products, vol. 70, no. 3, pp. 461–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Poupko, S. I. Baskin, and E. Moore, “The pharmacological properties of anisodamine,” Journal of Applied Toxicology, vol. 27, no. 2, pp. 116–121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Eisenbrand, F. Hippe, S. Jakobs, and S. Muehlbeyer, “Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine,” Journal of Cancer Research and Clinical Oncology, vol. 130, no. 11, pp. 627–635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. R. Desilets, J. J. Gickas, and K. C. Dunican, “Role of huperzine A in the treatment of alzheimer's disease,” Annals of Pharmacotherapy, vol. 43, no. 3, pp. 514–518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. R. Xiang and J. F. Sheng, “The analyse of effectiveness in HBeAg-positive chronic viral hepatitis B treated by adefovir dipivoxil combined with bicyclol,” Chinese Journal of Experimental and Clinical Virology, vol. 23, no. 4, pp. 299–301, 2009. View at Google Scholar · View at Scopus
  32. X. Z. Zhu, X. Y. Li, and J. Liu, “Recent pharmacological studies on natural products in China,” European Journal of Pharmacology, vol. 500, no. 1–3, pp. 221–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. L. Kuo, C. W. Chi, and T. Y. Liu, “The anti-inflammatory potential of berberine in vitro and in vivo,” Cancer Letters, vol. 203, no. 2, pp. 127–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Yan, C. Jin, X. H. Xiao, and X. P. Dong, “Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry,” Journal of Biochemical and Biophysical Methods, vol. 70, no. 6, pp. 845–849, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. P. R. Vuddanda, S. Chakraborty, and S. Singh, “Berberine: a potential phytochemical with multispectrum therapeutic activities,” Expert Opinion on Investigational Drugs, vol. 19, no. 10, pp. 1297–1307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Walsh and J. Goodman, “Cancer chemotherapy, biodiversity, public and private property: the case of the anti-cancer drug Taxol,” Social Science and Medicine, vol. 49, no. 9, pp. 1215–1225, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Khachik, A. Steck, and H. Pfander, “Isolation and structural elucidation of (13Z,13'Z,3R,3'R,6'R)-lutein from marigold flowers, kale, and human plasma,” Journal of Agricultural and Food Chemistry, vol. 47, no. 2, pp. 455–461, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Lippi and G. Targher, “Tomatoes, lycopene-containing foods and cancer risk,” British Journal of Cancer, vol. 104, no. 7, pp. 1234–1235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Sasidharan, Y. Chen, D. Saravanan, K. M. Sundram, and L. Yoga Latha, “Extraction, isolation and characterization of bioactive compounds from plants' extracts,” African Journal of Traditional, Complementary, and Alternative Medicines, vol. 8, no. 1, pp. 1–10, 2011. View at Google Scholar
  40. J. E. Ramberg, E. D. Nelson, and R. A. Sinnott, “Immunomodulatory dietary polysaccharides: a systematic review of the literature,” Nutrition Journal, vol. 9, article 54, 2010. View at Publisher · View at Google Scholar
  41. Z. Xu, X. Chen, Z. Zhong, L. Chen, and Y. Wang, “Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities,” The American Journal of Chinese Medicine, vol. 39, no. 1, pp. 15–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Holderness, I. A. Schepetkin, B. Freedman et al., “Polysaccharides isolated from açaí fruit induce innate immune responses,” PLoS One, vol. 6, no. 2, Article ID e17301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Leonarduzzi, G. Testa, B. Sottero, P. Gamba, and G. Poli, “Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids,” Current Medicinal Chemistry, vol. 17, no. 1, pp. 74–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. R. Im, Y. H. Kim, M. R. Uddin et al., “Scutellaria baicalensis extracts and flavonoids protect rat L6 cells from antimycin A-induced mitochondrial dysfunction,” Evidence Based Complementary and Alternative Medicine, vol. 2012, Article ID 517965, 8 pages, 2012. View at Publisher · View at Google Scholar
  45. D. Procházková, I. Boušová, and N. Wilhelmová, “Antioxidant and prooxidant properties of flavonoids,” Fitoterapia, vol. 82, no. 4, pp. 513–523, 2011. View at Publisher · View at Google Scholar
  46. A. K. Jäger and L. Saaby, “Flavonoids and the CNS,” Molecules, vol. 16, no. 2, pp. 1471–1485, 2011. View at Publisher · View at Google Scholar
  47. J. P. Sheng, H. R. Chen, and L. Shen, “Comparative study on selenium and amino acids content in leaves of planted and wild scutellaria baicalensis,” Spectroscopy and Spectral Analysis, vol. 29, no. 1, pp. 211–213, 2009 (Chinese). View at Google Scholar · View at Scopus
  48. J. Dai and R. J. Mumper, “Plant phenolics: extraction, analysis and their antioxidant and anticancer properties,” Molecules, vol. 15, no. 10, pp. 7313–7352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. K. Sinha, U. K. Sharma, and N. Sharma, “A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents,” International Journal of Food Sciences and Nutrition, vol. 59, no. 4, pp. 299–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Sahraoui, M. A. Vian, I. Bornard, C. Boutekedjiret, and F. Chemat, “Improved microwave steam distillation apparatus for isolation of essential oils. Comparison with conventional steam distillation,” Journal of Chromatography A, vol. 1210, no. 2, pp. 229–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Li, Z. Zhang, X. Sun, W. Wang, and M. Ma, “Optimization of extraction conditions for semi-bionic extraction of Guizhi Fuling pill decoction by uniform design,” Journal of Chinese Materia Medica, vol. 35, no. 16, pp. 2151–2156, 2010 (Chinese). View at Publisher · View at Google Scholar · View at Scopus
  52. Z. He and W. Xia, “Microwave-assisted extraction of phenolics from Canarium album L. and identification of the main phenolic compound,” Natural Product Research, vol. 25, no. 2, pp. 85–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Lesellier, “Supercritical fluid chromatography for bioanalysis: practical and theoretical considerations,” Bioanalysis, vol. 3, no. 2, pp. 125–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. C. X. Guo and S. K. Wang, “Applications of the art technology in separations of effective components of natural products,” Chemistry and Bioengineering, vol. 23, no. 5, pp. 38–40, 2006 (Chinese). View at Google Scholar
  55. “Extracts of Chinese herbal medicine” (Chinese), http://baike.baidu.com/view/108090.htm.
  56. S. Martens and A. Mithöfer, “Flavones and flavone synthases,” Phytochemistry, vol. 66, no. 20, pp. 2399–2407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. “Alkaloids” (Chinese), http://www.zhong-yao.net/zy/gy/hx/200803/106966.html.
  58. M. R. Lee, “The history of Ephedra (ma-huang),” The Journal of the Royal College of Physicians of Edinburgh, vol. 41, no. 1, pp. 78–84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. V. de Quattro and D. Li, “Sympatholytic therapy in primary hypertension: a user friendly role for the future,” Journal of Human Hypertension, vol. 16, supplement 1, pp. S118–S123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. J. P. S. N. Lima, L. V. dos Santos, E. C. Sasse, C. S. P. Lima, and A. D. Sasse, “Camptothecins compared with etoposide in combination with platinum analog in extensive stage small cell lung cancer: systematic review with meta-analysis,” Journal of Thoracic Oncology, vol. 5, no. 12, pp. 1986–1993, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. R. S. Glade, K. Vinson, D. Becton, S. Bhutta, and L. M. Buckmiller, “Management of complicated hemangiomas with vincristine/vinblastine: quantitative response to therapy using MRI,” International Journal of Pediatric Otorhinolaryngology, vol. 74, no. 11, pp. 1221–1225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Gupta, B. Bleakley, and R. K. Gupta, “Dragon's blood: botany, chemistry and therapeutic uses,” Journal of Ethnopharmacology, vol. 115, no. 3, pp. 361–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. E. C. Y. Chan, S. L. Yap, A. J. Lau, P. C. Leow, D. F. Toh, and H. L. Koh, “Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamed Panax notoginseng,” Rapid Communications in Mass Spectrometry, vol. 21, no. 4, pp. 519–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Y. Liu, X. W. Li, N. B. Wang et al., “Three new dammarane-type triterpene saponins from the leaves of Panax ginseng C.A. Meyer,” Journal of Asian Natural Products Research, vol. 12, no. 10, pp. 865–873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Wang, D. Peng, and J. Xie, “Ginseng leaf-stem: bioactive constituents and pharmacological functions,” Chinese Medicine, vol. 4, article 20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. Medicinal plants, http://www.ggssc.net/files/pdf/medicinal_plants.PDF.
  67. “State food and drug administration” (Chinese), http://app1.sfda.gov.cn/datasearch/face3/dir.html.
  68. “Leung's (Chinese) herb news,” http://www.phyto-tech.com/lchn/1997-06.html.
  69. “US pharmaceutical industry report, 2008-2009,” http://big5.askci.com/http://www.askci.com/enreports/2009-04/2009430113842.html.
  70. “Strategic adjustment of multinational pharmaceutical companies” (Chinese), http://www.istis.sh.cn/list/list.aspx?id=1787.
  71. C. Valant, J. Robert Lane, P. M. Sexton, and A. Christopoulos, “The best of both worlds? Bitopic orthosteric/allosteric ligands of G protein-coupled receptors,” Annual Review of Pharmacology and Toxicology, vol. 52, pp. 153–178, 2012. View at Publisher · View at Google Scholar
  72. L. Fang, S. Jumpertz, Y. Zhang et al., “Hybrid molecules from xanomeline and tacrine: enhanced tacrine actions on cholinesterases and muscarinic M1 receptors,” Journal of Medicinal Chemistry, vol. 53, no. 5, pp. 2094–2103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. X. H. Zheng, Y. C. Zhang, Q. Z. Zhang, and X. F. Zhao, “Synthesis and usage of Tanshinol borneol ester,” Patent no. ZL20060042787.3.
  74. W. M. Li, K. K. W. Kan, P. R. Carlier, Y. P. Pang, and Y. F. Han, “East meets west in the search for Alzheimer's therapeutics—novel dimeric inhibitors from tacrine and huperzine A,” Current Alzheimer Research, vol. 4, no. 4, pp. 386–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Itoh, M. Ishikawa, M. Naito, and Y. Hashimoto, “Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins,” Journal of the American Chemical Society, vol. 132, no. 16, pp. 5820–5826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Decker, “Hybrid molecules incorporating natural products: applications in cancer therapy, neurodegenerative disorders and beyond,” Current Medicinal Chemistry, vol. 18, no. 10, pp. 1464–1475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. A. D. Setyawan, “Traditionally utilization of Selaginella, field research and literature review,” Bioscience, vol. 1, no. 3, pp. 146–158, 2009. View at Google Scholar
  78. F. W. Muregi and A. Ishih, “Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design,” Drug Development Research, vol. 71, no. 1, pp. 20–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. P. M. O'Neill, V. E. Barton, and S. A. Ward, “The molecular mechanism of action of artemisininthe debate continues,” Molecules, vol. 15, no. 3, pp. 1705–1721, 2010. View at Publisher · View at Google Scholar
  80. “Roll Back Malaria Partners set ambitious financial targets for 19 African countries fighting malaria,” http://www.rollbackmalaria.org/amd2007/pr/pr_rbmAMD2007-e.pdf.
  81. “Malaria: severe, life-threatening,” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943816/pdf/2007-0913.pdf.
  82. R. Idro, K. Marsh, C. C. John, and C. R. J. Newton, “Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome,” Pediatric Research, vol. 68, no. 4, pp. 267–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. E. Hsu, “The history of qing hao in the Chinese materia medica,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 100, no. 6, pp. 505–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. “Qing Hao” (Chinese), http://www.hudong.com/wiki/%E9%9D%92%E8%92%BF.
  85. G. D. Brown, “The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of artemisia annua L. (Qinghao),” Molecules, vol. 15, no. 11, pp. 7603–7698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. H. K. Webster and E. K. Lehnert, “Chemistry of artemisinin: an overview,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 88, supplement 1, pp. S27–S29, 1994. View at Google Scholar · View at Scopus
  87. G. A. Balint, “Artemisinin and its derivatives: an important new class of antimalarial agents,” Pharmacology and Therapeutics, vol. 90, no. 2-3, pp. 261–265, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. V. Kumar, A. Mahajan, and K. Chibale, “Synthetic medicinal chemistry of selected antimalarial natural products,” Bioorganic and Medicinal Chemistry, vol. 17, no. 6, pp. 2236–2275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. A. G. Griesbeck, J. Neudörfl, A. Hörauf, S. Specht, and A. Raabe, “Antimalarial peroxide dyads from natural artemisinin and hydroxyalkylated 1,2,4-trioxanes,” Journal of Medicinal Chemistry, vol. 52, no. 10, pp. 3420–3423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Li and Y. L. Wu, “How Chinese scientists discovered qinghaosu (artemisinin) and developed its derivatives? What are the future perspectives?” Médecine Tropicale, vol. 58, supplement 3, pp. S9–S12, 1998. View at Google Scholar
  91. D. L. Klayman, “Qinghaosu (Artemisinin): an antimalarial drug from China,” Science, vol. 228, no. 4703, pp. 1049–1055, 1985. View at Google Scholar · View at Scopus
  92. D. D. Shen, Y. X. Zang, M. M. Shen, X. C. Yang, and C. Y. Ha, “Progress in dihydroartemisinin derivatives” (Chinese), http://wenku.baidu.com/view/2e5468c6aa00b52acfc7ca98.html.
  93. F. S. El-Feraly, M. A. Al-Yahya, K. Y. Orabi, D. R. McPhail, and A. T. McPhail, “A new method for the preparation of arteether and its C-9 epimer,” Journal of Natural Products, vol. 55, no. 7, pp. 878–883, 1992. View at Google Scholar · View at Scopus
  94. M. Ramharter, D. Burkhardt, J. Nemeth, A. A. Adegnika, and P. G. Kremsner, “Short report: in vitro activity of artemisone compared with artesunate against Plasmodium falciparum,” The American Journal of Tropical Medicine and Hygiene, vol. 75, no. 4, pp. 637–639, 2006. View at Google Scholar · View at Scopus
  95. P. M. O'Neill, “The therapeutic potential of semi-synthetic artemisinin and synthetic endoperoxide antimalarial agents,” Expert Opinion on Investigational Drugs, vol. 14, no. 9, pp. 1117–1128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. M. C. Lombard, D. D. N'Da, J. C. Breytenbach, P. J. Smith, and C. A. Lategan, “Artemisinin-quinoline hybrid-dimers: synthesis and in vitro antiplasmodial activity,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 23, pp. 6975–6977, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Lee, “Artemisinin, promising lead natural product for various drug developments,” Mini-Reviews in Medicinal Chemistry, vol. 7, no. 4, pp. 411–422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. F. M. Lu and H. Zhuang, “Management of hepatitis B in China,” Chinese Medical Journal, vol. 122, no. 1, pp. 3–4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. Hepatitis, http://www.mahalo.com/hepatitis/.
  100. F. M. Lu and H. Zhuang, “Management of hepatitis B in China,” Chinese Medicine Journal, vol. 122, no. 1, pp. 3–4, 2009. View at Google Scholar
  101. “Anti-hepatitis new drug bicyclol” (Chinese), http://www.5ymy.com/news/gxytj/0931383.html.
  102. A. Panossian and G. Wikman, “Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine,” Journal of Ethnopharmacology, vol. 118, no. 2, pp. 183–212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Lu and D. F. Chen, “Analysis of Schisandra chinensis and Schisandra sphenanthera,” Journal of Chromatography A, vol. 1216, no. 11, pp. 1980–1990, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. W. Xie and L. Du, “Diabetes is an inflammatory disease: evidence from traditional Chinese medicines,” Diabetes, Obesity and Metabolism, vol. 13, no. 4, pp. 289–301, 2011 (Chinese). View at Publisher · View at Google Scholar · View at Scopus
  105. T. T. Pao, K. T. Liu, H. F. Hsu, and C. Y. Sung, “Studies on Fructus schizandrae. I. Its effect on increased SGPT levels in animals caused by hepatotoxic chemical agents,” Journal of Chinese Medicine, vol. 5, no. 2, pp. 275–278, 1974 (Chinese). View at Google Scholar · View at Scopus
  106. Y. Y. Chen, Z. B. Shu, and L. N. Li, “Schisandra study—isolation and identification of bioactive ingredients for lowering alanine aminotransferase activity,” Science China A, vol. 1, pp. 98–110, 1976 (Chinese). View at Google Scholar
  107. Y. Y. Chen and L. N. Li, “Schisandra study—determination of schizander A and B structure,” Acta Chimica Sinica, vol. 34, pp. 48–55, 1976 (Chinese). View at Google Scholar
  108. T. T. Bao, G. F. Tu, G. T. Liu, R. H. Sun, and Z. Y. Song, “A comparison of the pharmacological actions of seven constituents isolated from fructus schizadrae (author's transl),” Acta Pharmaceutica Sinica, vol. 14, no. 1, pp. 1–7, 1979 (Chinese). View at Google Scholar · View at Scopus
  109. J. X. Xie, J. Zhou, Z. Zhan, J. H. Yang, J. X. Chen, and H. Q. Jin, “Synthesis of schizandrin C analogs,” Acta Pharmacologica Sinica, vol. 16, no. 4, pp. 306–309, 1981 (Chinese). View at Google Scholar
  110. G. T. Liu, H. L. Wei, and Z. Y. Song, “Further studies on the protective action of biphenyl dimethyl-dicarboxylate (BDD) against experimental liver injury in mice (author's transl),” Acta Pharmaceutica Sinica, vol. 17, no. 2, pp. 101–106, 1982. View at Google Scholar · View at Scopus
  111. G. T. Liu, “From the study of Fructus schizandrae to the discovery of biphenyl dimethyl-dicarboxylate,” Acta Pharmaceutica Sinica, vol. 18, no. 9, pp. 714–720, 1983. View at Google Scholar · View at Scopus
  112. X. L. Wang, M. G. Yi, Z. M. Liu, and Z. Y. Song, “Absorption, distribution and excretion of biphenyl dimethyl-dicarboxylate (BDD),” Acta Pharmaceutica Sinica, vol. 18, no. 12, pp. 892–899, 1983. View at Google Scholar · View at Scopus
  113. G. T. Liu, “The anti virus and hepatoprotective effect of bicyclol and its mechanism of action,” Chinese Journal of New Drugs, vol. 10, no. 5, pp. 325–327, 2001 (Chinese). View at Google Scholar
  114. X. J. Gu, “The efficacy of bicyclol in treatment of chronic hepatitis B. Chin,” Chinese Journal of New Drugs, vol. 13, no. 10, pp. 940–942, 2004. View at Google Scholar
  115. Y. Li, G. W. Dai, G. T. Liu, and Y. Li, “Effect of bicyclol on acetaminophen-induced hepatotoxicity: energetic metabolism and mitochondrial injury in acetaminophen-intoxicated mice,” Acta Pharmacologica Sinica, vol. 36, no. 10, pp. 723–726, 2001 (Chinese). View at Google Scholar · View at Scopus
  116. W. Hu, C. Z. Zhang, and Y. Li, “Resolution of racemic anti-hepatitis drug (+/-) -bicyclol,” Acta Pharmacologica Sinica, vol. 41, no. 3, pp. 221–224, 2006 (Chinese). View at Google Scholar
  117. Y. Tang, W. Hu, Y. Li, and C. Z. Zhang, “Synthesis of metabolites of bicyclol,” Acta Pharmacologica Sinica, vol. 42, no. 10, pp. 1054–1057, 2007 (Chinese). View at Google Scholar
  118. S. Y. Pan, H. Dong, B. F. Guo et al., “Effective kinetics of schisandrin B on serum/hepatic triglyceride and total cholesterol levels in mice with and without the influence of fenofibrate,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 383, no. 6, pp. 585–591, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Y. Pan, Z. L. Yu, H. Dong, C. J. Xiang, W. F. Fong, and K. M. Ko, “Ethanol extract of fructus schisandrae decreases hepatic triglyceride level in mice fed with a high fat/cholesterol diet, with attention to acute toxicity,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 729412, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Y. Pan, H. Dong, X. Y. Zhao et al., “Schisandrin B from Schisandra chinensis reduces hepatic lipid contents in hypercholesterolaemic mice,” The Journal of Pharmacy and Pharmacology, vol. 60, no. 3, pp. 399–403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Y. Pan, H. Dong, Z. L. Yu et al., “Bicyclol, a synthetic dibenzocyclooctadiene derivative, decreases hepatic lipids but increases serum triglyceride level in normal and hypercholesterolaemic mice,” The Journal of Pharmacy and Pharmacology, vol. 59, no. 12, pp. 1657–1662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Y. Pan, R. Yang, H. Dong, Z. L. Yu, and K. M. Ko, “Bifendate treatment attenuates hepatic steatosis in cholesterol/bile salt- and high-fat diet-induced hypercholesterolemia in mice,” European Journal of Pharmacology, vol. 552, no. 1–3, pp. 170–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Y. Pan, R. Yang, Y. F. Han et al., “High doses of bifendate elevate serum and hepatic triglyceride levels in rabbits and mice: animal models of acute hypertriglyceridemia,” Acta Pharmacologica Sinica, vol. 27, no. 6, pp. 673–678, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Y. Pan, H. Dong, Y. F. Han, W. Y. Li, X. Y. Zhao, and K. M. Ko, “A novel experimental model of acute hypertriglyceridemia induced by schisandrin B,” European Journal of Pharmacology, vol. 537, no. 1–3, pp. 200–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Y. Pan, Q. Yu, Zhang Y et al., “Dietary Fructus Schisandrae extracts and fenofibrate regulate the serum/hepatic lipid-profile in normal and hypercholesterolemic mice, with attention to hepatotoxicity,” Lipids in Health and Disease, vol. 11, article 120, 2012. View at Publisher · View at Google Scholar
  126. J. H. Chu, H. Wang, Y. Ye et al., “Inhibitory effect of schisandrin B on free fatty acid-induced steatosis in L-02 cells,” World Journal of Gastroenterology, vol. 17, no. 19, pp. 2379–2388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. S. I. Berger and R. Iyengar, “Network analyses in systems pharmacology,” Bioinformatics, vol. 25, no. 19, pp. 2466–2472, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. A. D. W. Boran and R. Iyengar, “Systems pharmacology,” Mount Sinai Journal of Medicine, vol. 77, no. 4, pp. 333–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. E. Ericson, M. Gebbia, L. E. Heisler et al., “Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast,” PLoS Genetics, vol. 4, no. 8, Article ID e1000151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. Wang, E. Bolton, S. Dracheva et al., “An overview of the PubChem BioAssay resource,” Nucleic Acids Research, vol. 38, no. 1, Article ID gkp965, pp. D255–D266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H. Bryant, “PubChem: a public information system for analyzing bioactivities of small molecules,” Nucleic Acids Research, vol. 37, no. 2, pp. W623–W633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. PDTD [Potential Drug Target Database], http://www.dddc.ac.cn/pdtd/.
  133. Z. Gao, H. Li, H. Zhang et al., “PDTD: a web-accessible protein database for drug target identification,” BMC Bioinformatics, vol. 9, article 104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. PDB, http://www.rcsb.org/pdb/.
  135. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000. View at Publisher · View at Google Scholar
  136. J. Drews, “Drug discovery: a historical perspective,” Science, vol. 287, no. 5460, pp. 1960–1964, 2000. View at Publisher · View at Google Scholar · View at Scopus
  137. B. Leader, Q. J. Baca, and D. E. Golan, “Protein therapeutics: a summary and pharmacological classification,” Nature Reviews Drug Discovery, vol. 7, no. 1, pp. 21–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. A. L. Hopkins and C. R. Groom, “The druggable genome,” Nature Reviews Drug Discovery, vol. 1, no. 9, pp. 727–730, 2002. View at Google Scholar · View at Scopus
  139. Q. Li, T. Cheng, Y. Wang, and S. H. Bryant, “PubChem as a public resource for drug discovery,” Drug Discovery Today, vol. 15, no. 23-24, pp. 1052–1057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. Sunset Molecular, http://www.sunsetmolecular.com/.
  141. Welcome to NetSci's List of Cheminformatics Databases, http://www.netsci.org/Resources/Software/Cheminfo/databases.html.
  142. DrugBank, http://www.drugbank.ca/.
  143. D. S. Wishart, C. Knox, A. C. Guo et al., “DrugBank: a comprehensive resource for in silico drug discovery and exploration,” Nucleic Acids Research, vol. 34, pp. D668–672, 2006. View at Google Scholar · View at Scopus
  144. B. Oh, C. H. Um, M. K. Lee et al., “THINKherb: the Herb INformation Knowledge base—the chip content database for herbal medicine,” Biochip Journal, vol. 2, no. 4, pp. 274–279, 2009. View at Google Scholar · View at Scopus
  145. “Traditional Chinese medicine information database,” http://tcm.cz3.nus.edu.sg/group/tcm-id/tcmid_ns.asp.
  146. X. Chen, H. Zhou, Y. B. Liu et al., “Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation,” British Journal of Pharmacology, vol. 149, no. 8, pp. 1092–1103, 2006. View at Google Scholar
  147. Traditional Chinese medicines integrated database, http://www.megabionet.org/tcmid/.
  148. R. Xue, Z. Fang, M. Zhang, Z. Yi, C. Wen, and T. Shi, “TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis,” Nucleic Acids Research, vol. 41, no. 1, pp. D1089–D1095, 2013. View at Publisher · View at Google Scholar
  149. U. Vetrivel, N. Subramanian, and K. Pilla, “InPACdb-Indian plant anticancer compounds database,” Bioinformation, vol. 4, no. 2, pp. 71–74, 2009, http://www.inpacdb.org/. View at Publisher · View at Google Scholar
  150. Z. Gao, H. Li, H. Zhang et al., “PDTD: a web-accessible protein database for drug target identification,” BMC Bioinformatics, vol. 9, article 104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. A. P. Russ and S. Lampel, “The druggable genome: an update,” Drug Discovery Today, vol. 10, no. 23-24, pp. 1607–1610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. A. D. W. Boran and R. Iyengar, “Systems approaches to polypharmacology and drug discovery,” Current Opinion in Drug Discovery and Development, vol. 13, no. 3, pp. 297–309, 2010. View at Google Scholar · View at Scopus
  153. J. P. Overington, B. Al-Lazikani, and A. L. Hopkins, “How many drug targets are there?” Nature Reviews Drug Discovery, vol. 5, no. 12, pp. 993–996, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. J. P. A. Ioannidis and O. A. Panagiotou, “Comparison of effect sizes associated with biomarkers reported in highly cited individual articles and in subsequent meta-analyses,” Journal of the American Medical Association, vol. 305, no. 21, pp. 2200–2210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. S. R. Smith, “Metabolic syndrome targets,” Current Drug Targets-CNS & Neurological Disorders, vol. 3, no. 5, pp. 431–439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. L. Brown, “Targets of research in the metabolic syndrome,” Endocrine, Metabolic and Immune Disorders, vol. 11, no. 3, p. 181, 2011. View at Google Scholar · View at Scopus
  157. O. Witt, H. E. Deubzer, T. Milde, and I. Oehme, “HDAC family: what are the cancer relevant targets?” Cancer Letters, vol. 277, no. 1, pp. 8–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. M. G. Butler, “Genetics of hypertension. Current status,” The Lebanese Medical Journal, vol. 58, no. 3, pp. 175–178, 2010. View at Google Scholar · View at Scopus
  159. R. Machado-Vieira, G. Salvadore, N. DiazGranados et al., “New therapeutic targets for mood disorders,” TheScientificWorldJournal, vol. 10, pp. 713–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. C. Heim and C. B. Nemeroff, “Neurobiology of posttraumatic stress disorder,” CNS Spectrums, vol. 14, no. 1, pp. 13–24, 2009. View at Google Scholar · View at Scopus
  161. D. H. Kim and S. M. Stahl, “Antipsychotic drug development,” Current topics in Behavioral Neurosciences, vol. 4, pp. 123–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. M. Asai, N. Iwata, T. Tomita et al., “Efficient four-drug cocktail therapy targeting amyloid-β peptide for Alzheimer's disease,” Journal of Neuroscience Research, vol. 88, no. 16, pp. 3588–3597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. C. Ruiz-Romero and F. J. Blanco, “The role of proteomics in osteoarthritis pathogenesis research,” Current Drug Targets, vol. 10, no. 6, pp. 543–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. P. L. Earl, C. Cotter, B. Moss et al., “Design and evaluation of multi-gene, multi-clade HIV-1 MVA vaccines,” Vaccine, vol. 27, no. 42, pp. 5885–5895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. D. Borsook, L. Becerra, and R. Hargreaves, “Biomarkers for chronic pain and analgesia. Part 1: the need, reality, challenges, and solutions,” Discovery Medicine, vol. 11, no. 58, pp. 197–207, 2011. View at Google Scholar · View at Scopus
  166. J. A. Saonere, “Antisense therapy, a magic bullet for the treatment of various diseases: present and future prospects,” Journal of Medical Genetics and Genomics, vol. 3, no. 5, pp. 77–83, 2011. View at Google Scholar
  167. “Transient ischemic attack,” http://medical-dictionary.thefreedictionary.com/Transient+ischaemic+episode.
  168. V. E. O'Collins, M. R. Macleod, G. A. Donnan, L. L. Horky, B. H. van der Worp, and D. W. Howells, “1,026 Experimental treatments in acute stroke,” Annals of Neurology, vol. 59, no. 3, pp. 467–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. P. M. D'Onofrio, M. Thayapararajah, M. D. Lysko et al., “Gene therapy for traumatic central nervous system injury and stroke using an engineered zinc finger protein that upregulates VEGF-A,” Journal of Neurotrauma, vol. 28, no. 9, pp. 1863–1879, 2011. View at Publisher · View at Google Scholar
  170. H. B. van der Worp, E. S. Sena, G. A. Donnan, D. W. Howells, and M. R. Macleod, “Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis,” Brain, vol. 130, no. 12, pp. 3063–3074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  171. T. Miyazawa, A. Tamura, S. Fukui, and K. A. Hossmann, “Effect of mild hypothermia on focal cerebral ischemia. Review of experimental studies,” Neurological Research, vol. 25, no. 5, pp. 457–464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  172. H. M. den Hertog, H. B. van der Worp, M. C. Tseng, and D. W. Dippel, “Cooling therapy for acute stroke,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD001247, 2009. View at Google Scholar · View at Scopus
  173. L. Xie, J. Li, L. Xie, and P. E. Bourne, “Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors,” PLoS Computational Biology, vol. 5, no. 5, Article ID e1000387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. H. Zhou, C. S. Beevers, and S. Huang, “The targets of curcumin,” Current Drug Targets, vol. 12, no. 3, pp. 332–347, 2011. View at Google Scholar · View at Scopus
  175. S. M. Wilhelm, L. Adnane, P. Newell, A. Villanueva, J. M. Llovet, and M. Lynch, “Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling,” Molecular Cancer Therapeutics, vol. 7, no. 10, pp. 3129–3140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. J. Mestres, E. Gregori-Puigjané, S. Valverde, and R. V. Solé, “Data completeness—the achilles heel of drug-target networks,” Nature Biotechnology, vol. 26, no. 9, pp. 983–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. “New drug failure rates rising in Phase II and III clinical trials,” http://www.medcitynews.com/2011/06/new-drug-failure-rates-rising-in-phase-ii-and-iii-clinical-trials/.
  178. A. Birmingham, E. M. Anderson, A. Reynolds et al., “3'UTR seed matches, but not overall identity, are associated with RNAi off-targets,” Nature Methods, vol. 3, no. 3, pp. 199–204, 2006. View at Publisher · View at Google Scholar
  179. S. M. Drawz and R. A. Bonomo, “Three decades of β-lactamase inhibitors,” Clinical Microbiology Reviews, vol. 23, no. 1, pp. 160–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. “Warning over threat posed by new superbugs resistant to “last resort” antibiotics,” http://teotwawki.ws/?p=948.
  181. “Are you taking antibiotics without knowing it?” http://www.consumer-health.com/services/cons_take66.php.
  182. S. I. Berger and R. Iyengar, “Network analyses in systems pharmacology,” Bioinformatics, vol. 25, no. 19, pp. 2466–2472, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. F. Hormozdiari, P. Berenbrink, N. Przulj, and S. C. Sahinalp, “Not all scale-free networks are born equal: the role of the seed graph in PPI network evolution,” PLoS Computational Biology, vol. 3, no. 7, article e118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  184. K. A. Forde and K. R. Reddy, “Hepatitis C Virus Infection and Immunomodulatory Therapies,” Clinics in Liver Disease, vol. 13, no. 3, pp. 391–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. V. G. Athyros, K. Tziomalos, A. Karagiannis, and D. P. Mikhailidis, “Dyslipidaemia of obesity, metabolic syndrome and type 2 diabetes mellitus: the case for residual risk reduction after statin treatment,” The Open Cardiovascular Medicine Journal, vol. 5, pp. 24–34, 2011. View at Google Scholar
  186. P. F. Wu, Z. Zhang, F. Wang, and J. G. Chen, “Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury,” Acta Pharmacologica Sinica, vol. 31, no. 12, pp. 1523–1531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. NIH news release, http://www.nih.gov/news/pr/jun2000/nhgri-26.htm.
  188. R. Galeazzi, “Molecular dynamics as a tool in rational drug design: current status and some major applications,” Current Computer-Aided Drug Design, vol. 5, no. 4, pp. 225–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. M. de Vivo, “Bridging quantum mechanics and structure-based drug design,” Frontiers in Bioscience, vol. 16, no. 5, pp. 1619–1633, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. K. Raha, M. B. Peters, B. Wang et al., “The role of quantum mechanics in structure-based drug design,” Drug Discovery Today, vol. 12, no. 17-18, pp. 725–731, 2007. View at Publisher · View at Google Scholar
  191. S. F. Zhou, Z. W. Zhou, C. G. Li et al., “Identification of drugs that interact with herbs in drug development,” Drug Discovery Today, vol. 12, no. 15-16, pp. 664–673, 2007. View at Publisher · View at Google Scholar · View at Scopus
  192. G. M. Cragg and D. J. Newman, “International collaboration in drug discovery and development from natural sources,” Pure and Applied Chemistry, vol. 77, no. 11, pp. 1923–1942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  193. “Gene expression profiling—Chinese medicine functional genomics research Reflec,” http://www.biosino.org/news-2002/200203/02031507.htm.
  194. J. W. A. van der Hoorn, J. W. Jukema, L. M. Havekes et al., “The dual PPARα/γ agonist tesaglitazar blocks progression of pre-existing atherosclerosis in APOE*3Leiden.CETP transgenic mice,” British Journal of Pharmacology, vol. 156, no. 7, pp. 1067–1075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  195. R. Balazs, J. Vernon, and J. Hardy, “Epigenetic mechanisms in Alzheimer's disease: progress but much to do,” Neurobiology of Aging, vol. 32, no. 7, pp. 1181–1187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  196. P. Hollingworth, D. Harold, R. Sims et al., “Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease,” Nature Genetics, vol. 43, no. 5, pp. 429–436, 2011. View at Publisher · View at Google Scholar · View at Scopus
  197. A. C. Naj, G. Jun, G. W. Beecham et al., “Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease,” Nature Genetics, vol. 43, no. 5, pp. 436–441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  198. A. R. Desilets, J. J. Gickas, and K. C. Dunican, “Role of huperzine A in the treatment of alzheimer's disease,” The Annals of Pharmacotherapy, vol. 43, no. 3, pp. 514–518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  199. J. Li, H. M. Wu, R. L. Zhou, G. J. Liu, and B. R. Dong, “Huperzine A for Alzheimer's disease,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD005592, 2008. View at Google Scholar · View at Scopus
  200. J. T. Little, S. Walsh, and P. S. Aisen, “An update on huperzine A as a treatment for Alzheimer's disease,” Expert Opinion on Investigational Drugs, vol. 17, no. 2, pp. 209–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. H. Y. Zhang, C. Y. Zheng, H. Yan et al., “Potential therapeutic targets of huperzine A for Alzheimer's disease and vascular dementia,” Chemico-Biological Interactions, vol. 175, no. 1–3, pp. 396–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  202. H. Y. Zhang, H. Yan, and X. C. Tang, “Non-cholinergic effects of huperzine A: beyond inhibition of acetylcholinesterase,” Cellular and Molecular Neurobiology, vol. 28, no. 2, pp. 173–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  203. “One thousand kinds of animals and plants Genome Project” (Chinese), http://news.sciencenet.cn/htmlnews/2010/5/232132.shtm.
  204. “China has successfully developed the world’s first medicinal plant genome framework map” (Chinese), http://news.sciencenet.cn/htmlnews/2010/6/233548.shtm.
  205. B. Liu, H. Wang, Z. Du, G. Li, and H. Ye, “Metabolic engineering of artemisinin biosynthesis in Artemisia annua L,” Plant Cell Reports, vol. 30, no. 5, pp. 689–694, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. C. Liu, Y. Zhao, and Y. Wang, “Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug,” Applied Microbiology and Biotechnology, vol. 72, no. 1, pp. 11–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  207. D. K. Ro, E. M. Paradise, M. Quellet et al., “Production of the antimalarial drug precursor artemisinic acid in engineered yeast,” Nature, vol. 440, no. 7086, pp. 940–943, 2006. View at Publisher · View at Google Scholar · View at Scopus
  208. J. R. Lenihan, H. Tsuruta, D. Diola, N. S. Renninger, and R. Regentin, “Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies,” Biotechnology Progress, vol. 24, no. 5, pp. 1026–1032, 2008. View at Publisher · View at Google Scholar · View at Scopus
  209. The human genome project, http://www.essortment.com/human-genome-project-59573.html.
  210. G. M. Cragg and D. J. Newman, “Nature: a vital source of leads for anticancer drug development,” Phytochemistry Reviews, vol. 8, no. 2, pp. 313–331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  211. “Mice, men share 99 percent of genes,” http://edition.cnn.com/2002/TECH/science/12/04/coolsc.coolsc.mousegenome/.
  212. B. J. Culliton, “The humanized fly,” http://www.barbaraculliton.com/humanized_fly.pdf.
  213. C. Napoli, C. Lemieux, and R. Jorgensen, “Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans,” The Plant Cell, vol. 2, no. 4, pp. 279–289, 1990. View at Google Scholar · View at Scopus
  214. Z. Zhao, Z. Liang, K. Chan et al., “A unique issue in the standardization of Chinese materia medica: processing,” Planta Medica, vol. 76, no. 17, pp. 1975–1986, 2010. View at Publisher · View at Google Scholar · View at Scopus
  215. F. Liao, “Discovery of artemisinin (Qinghaosu),” Molecules, vol. 14, no. 12, pp. 5362–5366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  216. “Process of artemisinin discovery,” http://blog.sciencenet.cn/home.php?mod=space&uid=396469&do=blog&id=365064.
  217. “Ecological ethics,” http://stats.oecd.org/glossary/detail.asp?ID=716.
  218. J. S. Singh, “The biodiversity crisis: a multifaceted review,” Current Science, vol. 82, pp. 638–647, 2002. View at Google Scholar
  219. Please don't ask us to carry these herbs, http://www.frontiercoop.com/learn/herbs.php.
  220. “Protection of endangered CHM” (Chinese), http://www.zhong-yao.net/ys/cc/200802/90460.html.
  221. “Chinese herbal medicinal decoding” (Chinese), http://it.oyksoft.com/post/2505.
  222. L. Y. Li, B. Z. Ciren, D. Zhan, and Y. F. Wei, “Comprehensive utilization and development of traditional Tibetan medicine in China,” China Journal of Chinese Materia Medica, vol. 26, no. 12, pp. 808–810, 2001 (Chinese). View at Google Scholar · View at Scopus
  223. L. Huang, B. Yang, M. Wang, and G. Fu, “An approach to some problems on utilization of medicinal plant resource in China,” China Journal of Chinese Materia Medica, vol. 24, no. 2, pp. 70–73, 1999 (Chinese). View at Google Scholar · View at Scopus
  224. “Endangered wild plants in Chinese Herbal Medicine” (Chinese), http://www.zhong-yao.net/zy/sc/zy/200803/107540.html.
  225. H. Azaizeh, B. Saad, K. Khalil, and O. Said, “The state of the art of traditional Arab herbal medicine in the Eastern region of the Mediterranean: a review,” Evidence-based Complementary and Alternative Medicine, vol. 3, no. 2, pp. 229–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  226. P. Marson and G. Pasero, “The Italian contributions to the history of salicylates,” Reumatismo, vol. 58, no. 1, pp. 66–75, 2006 (Italian). View at Google Scholar · View at Scopus
  227. J. G. Mahdi, A. J. Mahdi, A. J. Mahdi, and I. D. Bowen, “The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential,” Cell Proliferation, vol. 39, no. 2, pp. 147–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  228. K. C. Zhao and Z. Y. Song, “Pharmacokinetics of dihydroqinghaosu in human volunteers and comparison with qinghaosu,” Acta Pharmaceutica Sinica, vol. 28, no. 5, pp. 342–346, 1993 (Chinese). View at Google Scholar · View at Scopus
  229. Q. G. Li, J. O. Peggins, L. L. Fleckenstein, K. Masonic, M. H. Heiffer, and T. G. Brewer, “The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats,” The Journal of Pharmacy and Pharmacology, vol. 50, no. 2, pp. 173–182, 1998. View at Google Scholar · View at Scopus
  230. “Progress in standardized planting of Chinese herbal medicines” (Chinese), http://www.med66.com/new/56a294a2010/201047qiji112120.shtml.
  231. “Medicinal plants” (Chinese), www.hm160.cn/121/1211108.htm.
  232. B. Zhang, Y. Peng, Z. Zhang et al., “GAP production of TCM herbs in China,” Planta Medica, vol. 76, no. 17, pp. 1948–1955, 2010. View at Publisher · View at Google Scholar · View at Scopus
  233. H. Heuberger, R. Bauer, F. Friedl et al., “Cultivation and breeding of Chinese medicinal plants in Germany,” Planta Medica, vol. 76, no. 17, pp. 1956–1962, 2010. View at Publisher · View at Google Scholar · View at Scopus
  234. L. Zhang, F. Jing, F. Li et al., “Development of transgenic Artemisia annua (Chinese worm-wood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing,” Biotechnology and Applied Biochemistry, vol. 52, no. 3, pp. 199–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  235. A. Baldi and V. K. Dixit, “Yield enhancement strategies for artemisinin production by suspension cultures of Artemisia annua,” Bioresource Technology, vol. 99, no. 11, pp. 4609–4614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  236. J. D. Newman, J. Marshall, M. Chang et al., “High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli,” Biotechnology and Bioengineering, vol. 95, no. 4, pp. 684–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  237. J. H. Wang, W. Lia, Y. Sha, Y. Tezuka, S. Kadota, and X. Li, “Triterpenoid saponins from leaves and stems of Panax quinquefolium L,” Journal of Asian Natural Products Research, vol. 3, no. 2, pp. 123–130, 2001. View at Google Scholar · View at Scopus
  238. J. Chen, R. Zhao, Y. M. Zeng et al., “Three new triterpenoid saponins from the leaves and stems of Panax quinquefolium,” Journal of Asian Natural Products Research, vol. 11, no. 3, pp. 195–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  239. A. Gurib-Fakim, “Medicinal plants: traditions of yesterday and drugs of tomorrow,” Molecular Aspects of Medicine, vol. 27, no. 1, pp. 1–93, 2006. View at Publisher · View at Google Scholar · View at Scopus