Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 642920, 11 pages
http://dx.doi.org/10.1155/2013/642920
Research Article
Garlic-Derived S-Allylmercaptocysteine Ameliorates Nonalcoholic Fatty Liver Disease in a Rat Model through Inhibition of Apoptosis and Enhancing Autophagy
1Center for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
3Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
Received 18 December 2012; Revised 11 March 2013; Accepted 12 March 2013
Academic Editor: Yueh-Sheng Chen
Copyright © 2013 Jia Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- N. Méndez-Sánchez, M. Arrese, D. Zamora-Valdés, and M. Uribe, “Current concepts in the pathogenesis of nonalcoholic fatty liver disease,” Liver International, vol. 27, no. 4, pp. 423–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
- J. Edmilson and A. J. Mccullough, “Pathogenesis of non-alcoholic steatohepatitis: human data,” Clinical Liver Disease, vol. 11, no. 1, pp. 75–104, 2007. View at Google Scholar
- S. A. Polyzos, J. Kountouras, and C. Zavos, “The multi-hit process and the antagonistic roles of tumor necrosis factor-alpha and adiponectin in non alcoholic fatty liver disease,” Hippokratia, vol. 13, no. 2, p. 127, 2009. View at Google Scholar · View at Scopus
- N. Alkhouri, C. Carter-Kent, and A. E. Feldstein, “Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications,” Expert Review of Gastroenterology and Hepatology, vol. 5, no. 2, pp. 201–212, 2011. View at Publisher · View at Google Scholar · View at Scopus
- M. Marzioni, S. S. Glaser, G. Alpini, and G. D. LeSage, “Role of apoptosis in development of primary biliary cirrhosis,” Digestive and Liver Disease, vol. 33, no. 7, pp. 531–533, 2001. View at Google Scholar · View at Scopus
- M. J. Ramírez, E. Titos, J. Clària, M. Navasa, J. Fernández, and J. Rodés, “Increased apoptosis dependent on caspase-3 activity in polymorphonuclear leukocytes from patients with cirrhosis and ascites,” Journal of Hepatology, vol. 41, no. 1, pp. 44–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
- A. E. Feldstein, A. Canbay, P. Angulo et al., “Hepatocyte apoptosis and Fas expression are prominent features of human nonalcoholic steatohepatitis,” Gastroenterology, vol. 125, no. 2, pp. 437–443, 2003. View at Publisher · View at Google Scholar · View at Scopus
- A. E. Feldstein and G. J. Gores, “Apoptosis in alcoholic and nonalcoholic steatohepatitis,” Frontiers in Bioscience, vol. 10, no. 3, pp. 3093–3099, 2005. View at Google Scholar · View at Scopus
- S. Haupt, M. Berger, Z. Goldberg, and Y. Haupt, “Apoptosis—the p53 network,” Journal of Cell Science, vol. 116, no. 20, pp. 4077–4085, 2003. View at Publisher · View at Google Scholar · View at Scopus
- J. D. Amaral, J. M. Xavier, C. J. Steer et al., “The role of p53 in apoptosis,” Discovery Medicine, vol. 9, no. 45, pp. 145–152, 2010. View at Google Scholar
- J. C. Martinou and R. J. Youle, “Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics,” Developmental Cell, vol. 21, no. 1, pp. 92–101, 2011. View at Google Scholar
- G. Kroemer, G. Mariño, and B. Levine, “Autophagy and the integrated stress response,” Molecular Cell, vol. 40, no. 2, pp. 280–293, 2010. View at Google Scholar
- M. Komatsu, “Liver autophagy: physiology and pathology,” The Journal of Biochemistry, vol. 152, no. 1, pp. 5–15, 2012. View at Google Scholar
- L. D. Lawson and Z. J. Wang, “Pre-hepatic fate of the organosulfur compounds derived from garlic (Allium sativum),” Planta Medica, vol. 59, no. 7, pp. A688–A689, 1993. View at Google Scholar · View at Scopus
- E. W. Howard, M. T. Ling, W. C. Chee, W. C. Hiu, X. Wang, and C. W. Yong, “Garlic-derived S-allylmercaptocysteine is a novel in vivo antimetastatic agent for androgen-independent prostate cancer,” Clinical Cancer Research, vol. 13, no. 6, pp. 1847–1856, 2007. View at Publisher · View at Google Scholar · View at Scopus
- D. Liang, Y. Qin, W. Zhao et al., “S-allylmercaptocysteine effectively inhibits the proliferation of colorectal cancer cells under in vitro and in vivo conditions,” Cancer Letters, vol. 310, no. 1, pp. 69–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
- D. Xiao, J. T. Pinto, J. W. Soh et al., “Induction of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) Is associated with microtubule depolymerization and c-jun NH2Kinase 1 activation,” Cancer Research, vol. 63, no. 20, pp. 6825–6837, 2003. View at Google Scholar · View at Scopus
- I. Sumioka, T. Matsura, and K. Yamada, “Therapeutic effect of S-allylmercaptocysteine on acetaminophen-induced liver injury in mice,” European Journal of Pharmacology, vol. 433, no. 2-3, pp. 177–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
- J. Xiao, E. C. Liong, M. T. Ling, Y. P. Ching, M. L. Fung, and G. L. Tipoe, “S-allylmercaptocysteine reduces carbon tetrachloride-induced hepatic oxidative stress and necroinflammation via nuclear factor kappa B-dependent pathways in mice,” European Journal of Nutrition, vol. 51, no. 3, pp. 323–333, 2011. View at Publisher · View at Google Scholar · View at Scopus
- J. Xiao, Y. P. Ching, E. C. Liong et al., “Garlic-derived S-allylmercaptocysteine is a hepato-protective agent in non-alcoholic fatty liver disease in vivo animal model,” European Journal of Nutrition, vol. 52, no. 1, pp. 179–191, 2013. View at Publisher · View at Google Scholar
- J. G. Walsh, S. P. Cullen, C. Sheridan, A. U. Lüthi, C. Gerner, and S. J. Martin, “Executioner caspase-3 and caspase-7 are functionally distinct proteases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 12815–12819, 2008. View at Publisher · View at Google Scholar · View at Scopus
- E. Centis, R. Marzocchi, S. Di Domizio, M. F. Ciaravella, and G. Marchesini, “The effect of lifestyle changes in non-alcoholic fatty liver disease,” Digestive Diseases, vol. 28, no. 1, pp. 267–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
- N. Rafiq and Z. M. Younossi, “Effects of weight loss on nonalcoholic fatty liver disease,” Seminars in Liver Disease, vol. 28, no. 4, pp. 427–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
- P. S. Ribeiro, H. Cortez-Pinto, S. Solá et al., “Hepatocyte apoptosis, expression of death receptors, and activation of NF-κB in the liver of nonalcoholic and alcoholic steatohepatitis patients,” American Journal of Gastroenterology, vol. 99, no. 9, pp. 1708–1717, 2004. View at Publisher · View at Google Scholar · View at Scopus
- A. E. Feldstein, A. Canbay, M. E. Guicciardi, H. Higuchi, S. F. Bronk, and G. J. Gores, “Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice,” Journal of Hepatology, vol. 39, no. 6, pp. 978–983, 2003. View at Publisher · View at Google Scholar · View at Scopus
- G. C. Farrell, C. Z. Larter, J. Y. Hou et al., “Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression,” Journal of Gastroenterology and Hepatology, vol. 24, no. 3, pp. 443–452, 2009. View at Google Scholar
- G. L. Tipoe, C. T. Ho, E. C. Liong et al., “Voluntary oral feeding of rats not requiring a very high fat diet is a clinically relevant animal model of non-alcoholic fatty liver disease (NAFLD),” Histology and Histopathology, vol. 24, no. 9, pp. 1161–1169, 2009. View at Google Scholar · View at Scopus
- H. Shirin, J. T. Pinto, Y. Kawabata et al., “Antiproliferative effects of S-allylmercaptocysteine on colon cancer cells when tested alone or in combination with sulindac sulfide,” Cancer Research, vol. 61, no. 2, pp. 725–731, 2001. View at Google Scholar · View at Scopus
- R. Singh, S. Kaushik, Y. Wang et al., “Autophagy regulates lipid metabolism,” Nature, vol. 458, no. 7242, pp. 1131–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
- S. Mei, H. M. Ni, S. Manley et al., “Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes,” Journal of Pharmacology and Experimental Therapeutics, vol. 339, no. 2, pp. 487–498, 2011. View at Google Scholar
- G. R. Chang, Y. S. Chiu, Y. Y. Wu et al., “Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice,” Journal of Pharmacological Sciences, vol. 109, no. 4, pp. 496–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
- H. M. Ni, J. A. Williams, H. Yang et al., “Targeting autophagy for the treatment of liver diseases,” Pharmacological Research, vol. 66, no. 6, pp. 463–474, 2012. View at Google Scholar
- G. Filomeni, S. Cardaci, A. M. Da Costa Ferreira, G. Rotilio, and M. R. Ciriolo, “Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: Evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment,” Biochemical Journal, vol. 437, no. 3, pp. 443–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
- J. H. Ix and K. Sharma, “Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-A, adiponectin, and AMPK,” Journal of the American Society of Nephrology, vol. 21, no. 3, pp. 406–412, 2010. View at Publisher · View at Google Scholar · View at Scopus
- Y. W. Kim, S. M. Lee, S. M. Shin et al., “Efficacy of sauchinone as a novel AMPK-activating lignan for preventing iron-induced oxidative stress and liver injury,” Free Radical Biology and Medicine, vol. 47, no. 7, pp. 1082–1092, 2009. View at Publisher · View at Google Scholar · View at Scopus
- M. S. Sang, J. C. Il, and G. K. Sang, “Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3β inhibition downstream of poly(ADP-ribose) polymerase-LKB1 pathway,” Molecular Pharmacology, vol. 76, no. 4, pp. 884–895, 2009. View at Publisher · View at Google Scholar · View at Scopus
- J. W. Han, X. R. Zhan, X. Y. Li et al., “Impaired PI3K/Akt signal pathway and hepatocellular injury in high-fat fed rats,” World Journal of Gastroenterology, vol. 16, no. 48, pp. 6111–6118, 2010. View at Publisher · View at Google Scholar · View at Scopus
- R. Singh and A. M. Cuervo, “Lipophagy: connecting autophagy and lipid metabolism,” International Journal of Cell Biology, vol. 2012, Article ID 282041, 12 pages, 2012. View at Publisher · View at Google Scholar