Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 642920, 11 pages
http://dx.doi.org/10.1155/2013/642920
Research Article

Garlic-Derived S-Allylmercaptocysteine Ameliorates Nonalcoholic Fatty Liver Disease in a Rat Model through Inhibition of Apoptosis and Enhancing Autophagy

1Center for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
3Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong

Received 18 December 2012; Revised 11 March 2013; Accepted 12 March 2013

Academic Editor: Yueh-Sheng Chen

Copyright © 2013 Jia Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Méndez-Sánchez, M. Arrese, D. Zamora-Valdés, and M. Uribe, “Current concepts in the pathogenesis of nonalcoholic fatty liver disease,” Liver International, vol. 27, no. 4, pp. 423–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Edmilson and A. J. Mccullough, “Pathogenesis of non-alcoholic steatohepatitis: human data,” Clinical Liver Disease, vol. 11, no. 1, pp. 75–104, 2007. View at Google Scholar
  3. S. A. Polyzos, J. Kountouras, and C. Zavos, “The multi-hit process and the antagonistic roles of tumor necrosis factor-alpha and adiponectin in non alcoholic fatty liver disease,” Hippokratia, vol. 13, no. 2, p. 127, 2009. View at Google Scholar · View at Scopus
  4. N. Alkhouri, C. Carter-Kent, and A. E. Feldstein, “Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications,” Expert Review of Gastroenterology and Hepatology, vol. 5, no. 2, pp. 201–212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Marzioni, S. S. Glaser, G. Alpini, and G. D. LeSage, “Role of apoptosis in development of primary biliary cirrhosis,” Digestive and Liver Disease, vol. 33, no. 7, pp. 531–533, 2001. View at Google Scholar · View at Scopus
  6. M. J. Ramírez, E. Titos, J. Clària, M. Navasa, J. Fernández, and J. Rodés, “Increased apoptosis dependent on caspase-3 activity in polymorphonuclear leukocytes from patients with cirrhosis and ascites,” Journal of Hepatology, vol. 41, no. 1, pp. 44–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. E. Feldstein, A. Canbay, P. Angulo et al., “Hepatocyte apoptosis and Fas expression are prominent features of human nonalcoholic steatohepatitis,” Gastroenterology, vol. 125, no. 2, pp. 437–443, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. Feldstein and G. J. Gores, “Apoptosis in alcoholic and nonalcoholic steatohepatitis,” Frontiers in Bioscience, vol. 10, no. 3, pp. 3093–3099, 2005. View at Google Scholar · View at Scopus
  9. S. Haupt, M. Berger, Z. Goldberg, and Y. Haupt, “Apoptosis—the p53 network,” Journal of Cell Science, vol. 116, no. 20, pp. 4077–4085, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. D. Amaral, J. M. Xavier, C. J. Steer et al., “The role of p53 in apoptosis,” Discovery Medicine, vol. 9, no. 45, pp. 145–152, 2010. View at Google Scholar
  11. J. C. Martinou and R. J. Youle, “Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics,” Developmental Cell, vol. 21, no. 1, pp. 92–101, 2011. View at Google Scholar
  12. G. Kroemer, G. Mariño, and B. Levine, “Autophagy and the integrated stress response,” Molecular Cell, vol. 40, no. 2, pp. 280–293, 2010. View at Google Scholar
  13. M. Komatsu, “Liver autophagy: physiology and pathology,” The Journal of Biochemistry, vol. 152, no. 1, pp. 5–15, 2012. View at Google Scholar
  14. L. D. Lawson and Z. J. Wang, “Pre-hepatic fate of the organosulfur compounds derived from garlic (Allium sativum),” Planta Medica, vol. 59, no. 7, pp. A688–A689, 1993. View at Google Scholar · View at Scopus
  15. E. W. Howard, M. T. Ling, W. C. Chee, W. C. Hiu, X. Wang, and C. W. Yong, “Garlic-derived S-allylmercaptocysteine is a novel in vivo antimetastatic agent for androgen-independent prostate cancer,” Clinical Cancer Research, vol. 13, no. 6, pp. 1847–1856, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Liang, Y. Qin, W. Zhao et al., “S-allylmercaptocysteine effectively inhibits the proliferation of colorectal cancer cells under in vitro and in vivo conditions,” Cancer Letters, vol. 310, no. 1, pp. 69–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Xiao, J. T. Pinto, J. W. Soh et al., “Induction of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) Is associated with microtubule depolymerization and c-jun NH2Kinase 1 activation,” Cancer Research, vol. 63, no. 20, pp. 6825–6837, 2003. View at Google Scholar · View at Scopus
  18. I. Sumioka, T. Matsura, and K. Yamada, “Therapeutic effect of S-allylmercaptocysteine on acetaminophen-induced liver injury in mice,” European Journal of Pharmacology, vol. 433, no. 2-3, pp. 177–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Xiao, E. C. Liong, M. T. Ling, Y. P. Ching, M. L. Fung, and G. L. Tipoe, “S-allylmercaptocysteine reduces carbon tetrachloride-induced hepatic oxidative stress and necroinflammation via nuclear factor kappa B-dependent pathways in mice,” European Journal of Nutrition, vol. 51, no. 3, pp. 323–333, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Xiao, Y. P. Ching, E. C. Liong et al., “Garlic-derived S-allylmercaptocysteine is a hepato-protective agent in non-alcoholic fatty liver disease in vivo animal model,” European Journal of Nutrition, vol. 52, no. 1, pp. 179–191, 2013. View at Publisher · View at Google Scholar
  21. J. G. Walsh, S. P. Cullen, C. Sheridan, A. U. Lüthi, C. Gerner, and S. J. Martin, “Executioner caspase-3 and caspase-7 are functionally distinct proteases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 12815–12819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Centis, R. Marzocchi, S. Di Domizio, M. F. Ciaravella, and G. Marchesini, “The effect of lifestyle changes in non-alcoholic fatty liver disease,” Digestive Diseases, vol. 28, no. 1, pp. 267–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Rafiq and Z. M. Younossi, “Effects of weight loss on nonalcoholic fatty liver disease,” Seminars in Liver Disease, vol. 28, no. 4, pp. 427–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. S. Ribeiro, H. Cortez-Pinto, S. Solá et al., “Hepatocyte apoptosis, expression of death receptors, and activation of NF-κB in the liver of nonalcoholic and alcoholic steatohepatitis patients,” American Journal of Gastroenterology, vol. 99, no. 9, pp. 1708–1717, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. E. Feldstein, A. Canbay, M. E. Guicciardi, H. Higuchi, S. F. Bronk, and G. J. Gores, “Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice,” Journal of Hepatology, vol. 39, no. 6, pp. 978–983, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. G. C. Farrell, C. Z. Larter, J. Y. Hou et al., “Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression,” Journal of Gastroenterology and Hepatology, vol. 24, no. 3, pp. 443–452, 2009. View at Google Scholar
  27. G. L. Tipoe, C. T. Ho, E. C. Liong et al., “Voluntary oral feeding of rats not requiring a very high fat diet is a clinically relevant animal model of non-alcoholic fatty liver disease (NAFLD),” Histology and Histopathology, vol. 24, no. 9, pp. 1161–1169, 2009. View at Google Scholar · View at Scopus
  28. H. Shirin, J. T. Pinto, Y. Kawabata et al., “Antiproliferative effects of S-allylmercaptocysteine on colon cancer cells when tested alone or in combination with sulindac sulfide,” Cancer Research, vol. 61, no. 2, pp. 725–731, 2001. View at Google Scholar · View at Scopus
  29. R. Singh, S. Kaushik, Y. Wang et al., “Autophagy regulates lipid metabolism,” Nature, vol. 458, no. 7242, pp. 1131–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Mei, H. M. Ni, S. Manley et al., “Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes,” Journal of Pharmacology and Experimental Therapeutics, vol. 339, no. 2, pp. 487–498, 2011. View at Google Scholar
  31. G. R. Chang, Y. S. Chiu, Y. Y. Wu et al., “Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice,” Journal of Pharmacological Sciences, vol. 109, no. 4, pp. 496–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. M. Ni, J. A. Williams, H. Yang et al., “Targeting autophagy for the treatment of liver diseases,” Pharmacological Research, vol. 66, no. 6, pp. 463–474, 2012. View at Google Scholar
  33. G. Filomeni, S. Cardaci, A. M. Da Costa Ferreira, G. Rotilio, and M. R. Ciriolo, “Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: Evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment,” Biochemical Journal, vol. 437, no. 3, pp. 443–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. H. Ix and K. Sharma, “Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-A, adiponectin, and AMPK,” Journal of the American Society of Nephrology, vol. 21, no. 3, pp. 406–412, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. W. Kim, S. M. Lee, S. M. Shin et al., “Efficacy of sauchinone as a novel AMPK-activating lignan for preventing iron-induced oxidative stress and liver injury,” Free Radical Biology and Medicine, vol. 47, no. 7, pp. 1082–1092, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. S. Sang, J. C. Il, and G. K. Sang, “Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3β inhibition downstream of poly(ADP-ribose) polymerase-LKB1 pathway,” Molecular Pharmacology, vol. 76, no. 4, pp. 884–895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. W. Han, X. R. Zhan, X. Y. Li et al., “Impaired PI3K/Akt signal pathway and hepatocellular injury in high-fat fed rats,” World Journal of Gastroenterology, vol. 16, no. 48, pp. 6111–6118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Singh and A. M. Cuervo, “Lipophagy: connecting autophagy and lipid metabolism,” International Journal of Cell Biology, vol. 2012, Article ID 282041, 12 pages, 2012. View at Publisher · View at Google Scholar