Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 681891, 12 pages
http://dx.doi.org/10.1155/2013/681891
Research Article

The Antibacterial Effect of Ethanol Extract of Polish Propolis on Mutans Streptococci and Lactobacilli Isolated from Saliva

1Department of Conservative Dentistry with Endodontics, Division of Medicine and Dentistry, Medical University of Silesia, Pl. Akademicki 17, 41-902 Bytom, Poland
2Department of Pathology, School of Pharmacy and Laboratory Medicine, Medical University of Silesia, ul. Ostrogorska 30, 41-200 Sosnowiec, Poland
3Department and Institute of Microbiology and Virology, School of Pharmacy and Laboratory Medicine, Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland
4Department of Oral Surgery, Division of Medicine and Dentistry, Medical University of Silesia, Pl. Akademicki 17, 41-902 Bytom, Poland

Received 10 January 2013; Revised 5 February 2013; Accepted 25 February 2013

Academic Editor: Zenon Czuba

Copyright © 2013 Arkadiusz Dziedzic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Topcuoglu, F. Ozan, M. Ozyurt, and G. Kulekci, “In vitro antibacterial effects of glass-ionomer cement containing ethanolic extract of propolis on Streptococcus mutans,” European Journal of Dentistry, vol. 6, no. 4, pp. 428–433, 2012. View at Google Scholar
  2. S. Kumazawa, T. Hamasaka, and T. Nakayama, “Antioxidant activity of propolis of various geographic origins,” Food Chemistry, vol. 84, no. 3, pp. 329–339, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kujumgiev, I. Tsvetkova, Y. Serkedjieva, V. Bankova, R. Christov, and S. Popov, “Antibacterial, antifungal and antiviral activity of propolis of different geographic origin,” Journal of Ethnopharmacology, vol. 64, no. 3, pp. 235–240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Russo, V. Cardile, F. Sanchez, N. Troncoso, A. Vanella, and J. A. Garbarino, “Chilean propolis: antioxidant activity and antiproliferative action in human tumor cell lines,” Life Sciences, vol. 76, no. 5, pp. 545–558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Sawicka, H. Car, M. H. Borawska, and J. Nikliński, “The anticancer activity of propolis,” Folia Histochemica et Cytobiologica, vol. 50, no. 1, pp. 25–37, 2012. View at Google Scholar
  6. E. Szliszka, Z. Czuba, J. Bronikowska, A. Mertas, A. Paradysz, and W. Krol, “Ethanolic extract of propolis augments TRAIL-induced apoptotic death in prostate cancer cells,” Evidence-Based Complementary and Alternative Medicine, vol. 11, Article ID 535172, 11 pages, 2011. View at Publisher · View at Google Scholar
  7. E. Szliszka, Z. P. Czuba, K. Jernas, and W. Król, “Dietary flavonoids sensitize HeLa cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL),” International Journal of Molecular Sciences, vol. 9, no. 1, pp. 56–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Sforcin, A. Fernandes, C. A. M. Lopes, V. Bankova, and S. R. C. Funari, “Seasonal effect on Brazilian propolis antibacterial activity,” Journal of Ethnopharmacology, vol. 73, no. 1-2, pp. 243–249, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. G. P. Rezende, F. C. Pimenta, and L. R. Costa, “Antimicrobial activity of two Brazilian commercial propolis extracts,” Brazilian Journal of Oral Sciences, vol. 5, pp. 967–970, 2006. View at Google Scholar
  10. F. A. Santos, E. M. A. Bastos, M. Uzeda et al., “Antibacterial activity of Brazilian propolis and fractions against oral anaerobic bacteria,” Journal of Ethnopharmacology, vol. 80, no. 1, pp. 1–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. K. Park, M. H. Koo, J. A. S. Abreu, M. Ikegaki, J. A. Cury, and P. L. Rosalen, “Antimicrobial activity of propolis on oral microorganisms,” Current Microbiology, vol. 36, no. 1, pp. 24–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Malhotra, S. P. Rao, S. Acharya, and B. Vasudev, “Comparative in vitro evaluation of efficacy of mouthrinses against Streptococcus mutans, Lactobacilli and Candida albicans,” Oral Health Preventive Dentistry, vol. 9, no. 3, pp. 261–268, 2011. View at Google Scholar
  13. G. A. Elbaz and I. I. Elsayad, “Comparison of the antimicrobial effect of Egyptian propolis versus New Zealand propolis on Streptococcus mutans and Lactobacilli in Saliva,” Oral Health Preventive Dentistry, vol. 10, no. 2, pp. 155–160, 2012. View at Google Scholar
  14. F. Ozan, Z. Sümer, Z. A. Polat, K. Er, U. Ozan, and O. Deer, “Effect of mouth rinse containing propolis on oral microorganisms and human gingival fibroblast,” European Journal of Dentistry, vol. 11, pp. 195–200, 2007. View at Google Scholar
  15. M. I. Nieva Moreno, M. I. Isla, N. G. Cudmani, M. A. Vattuone, and A. R. Sampietro, “Screening of antibacterial activity of Amaicha del Valle (Tucuman, Argentina) propolis,” Journal of Ethnopharmacology, vol. 68, no. 1–3, pp. 97–102, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Seidel, E. Peyfoon, D. G. Watson, and J. Fearnley, “Comparative study of the antibacterial activity of propolis from different geographical and climatic zones,” Phytotherapy Research, vol. 22, no. 9, pp. 1256–1263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Bankova, R. Christov, A. Kujumgiev, M. C. Marcucci, and S. Popov, “Chemical composition and antibacterial activity of Brazilian propolis,” Journal of Biosciences, vol. 50, no. 3-4, pp. 167–172, 1995. View at Google Scholar · View at Scopus
  18. J. S. Bonvehí, F. V. Coll, and R. E. Jordà, “The composition, active components and bacteriostatic activity of propolis in dietetics,” Journal of the American Oil Chemists' Society, vol. 71, no. 5, pp. 529–532, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Salatino, E. W. Teixeira, G. Negri, and D. Message, “Origin and chemical variation of Brazilian propolis,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 1, pp. 33–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Blonska, Z. P. Czuba, and W. Krol, “Effect of flavone derivatives on interleukin-1β (IL-1β) mRNA expression and IL-1β protein synthesis in stimulated RAW 264.7 macrophages,” Scandinavian Journal of Immunology, vol. 57, no. 2, pp. 162–166, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Krol, S. Scheller, Z. Czuba et al., “Inhibition of neutrophils' chemiluminescence by ethanol extract of propolis (EEP) and its phenolic components,” Journal of Ethnopharmacology, vol. 55, no. 1, pp. 19–25, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Krol, Z. Czuba, S. Scheller, J. Gabrys, S. Grabiec, and J. Shani, “Anti-oxidant property of ethanolic extract of propolis (EEP) as evaluated by inhibiting the chemiluminescence oxidation of luminol,” Biochemistry International, vol. 21, no. 4, pp. 593–597, 1990. View at Google Scholar · View at Scopus
  23. J. M. Sforcin, “Propolis and the immune system: a review,” Journal of Ethnopharmacoogy, vol. 113, no. 1, pp. 1–14, 2007. View at Google Scholar
  24. V. Dimov, N. Ivanovska, N. Manolova, V. Bankova, N. Nikolov, and S. Popov, “Immunomodulatory action of propolis. Influence on anti-infectious protection and macrophage function,” Apidologie, vol. 22, pp. 155–162, 1991. View at Google Scholar
  25. M. C. Marcucci, “Propolis: chemical composition, biological properties and therapeutic activity,” Apidologie, vol. 26, no. 2, pp. 83–99, 1995. View at Google Scholar · View at Scopus
  26. Y. K. Park, M. H. Koo, M. Ikegaki, J. A. Cury, and P. L. Rosalen, “Effects of propolis on Streptococcus mutans, Actinomyces naeslundii and Staphylococcus aureus,” Revista de Microbiologia, vol. 29, no. 2, pp. 143–148, 1998. View at Google Scholar · View at Scopus
  27. B. Kedzia, “Chemical composition of Polish propolis—part II. New studies,” Postepy Fitoterapii, vol. 10, no. 2, pp. 122–128, 2009. View at Google Scholar
  28. R. A. Whiley and D. Beighton, “Current classification of the oral streptococci,” Oral Microbiology and Immunology, vol. 13, no. 4, pp. 195–216, 1998. View at Google Scholar · View at Scopus
  29. Streptococcus mutans and the mutans streptococci. Oral Environment Online Tutorial, http://www.ncl.ac.uk/dental/oralbiol/oralenv/tutorials/mutans.htm.
  30. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), “Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. EUCAST discussion document E.dis. 5.1,” Clinical Microbiology and Infection, vol. 9, no. 8, pp. 1–7, 2003. View at Google Scholar
  31. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility test: M2-A9.2006, “Performance standards for antimicrobial susceptibility testing,” 18th informational supplement: M100-S18, Wayne, Pa, USA, 2008.
  32. W. Maciejewicz and W. Markowski, “Identification of flavonoids aglicones by GC-MS from propolis collected in Southern Poland,” in Proceedings of the 2nd International Symposium on Chromatography of Natural Products, vol. 76, p. 34, Kazimierz Dolny, Lublin, Poland, 2000.
  33. G. P. Rezende, F. C. Pimenta, and L. R. Costa, “Antimicrobial activity of two Brazilian commercial propolis extracts,” Brazilian Journal of Oral Sciences, vol. 5, pp. 967–970, 2006. View at Google Scholar
  34. S. A. Liberio, A. L. Pereira, M. J. Araujo et al., “The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci,” Journal of Ethnopharmacology, vol. 125, pp. 1–9, 2009. View at Google Scholar
  35. N. B. Takaisi-Kikuni and H. Schilcher, “Electron microscopic and microcalorimetric investigations of the possible mechanism of the antibacterial action of a defined propolis provenance,” Planta Medica, vol. 60, no. 3, pp. 222–227, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. O. K. Mirzoeva, R. N. Grishanin, and P. C. Calder, “Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria,” Microbiological Research, vol. 152, no. 3, pp. 239–246, 1997. View at Google Scholar · View at Scopus
  37. N. C. Cook and S. Samma, “Flavonoids: chemistry, metabolism, cardioprotective effects and dietary sourses,” Journal of Nutritrional Biochememistry, vol. 7, pp. 66–76, 1996. View at Google Scholar
  38. W. Krol, J. Shani, Z. Czuba, and S. Scheller, “Modulating luminol-dependent chemiluminescence of neutrophils by flavones,” Zeitschrift fur Naturforschung C, vol. 47, no. 11-12, pp. 889–892, 1992. View at Google Scholar · View at Scopus
  39. Z. Czuba, W. Krol, S. Scheller, and J. Shani, “Effect of cinnamic and acrylic acids' derivatives on luminol-enhanced chemiluminescence of neutrophils,” Zeitschrift fur Naturforschung C, vol. 47, no. 9-10, pp. 753–756, 1992. View at Google Scholar · View at Scopus
  40. W. Krol, Z. Czuba, S. Scheller, Z. Paradowski, and J. Shani, “Structure-activity relationship in the ability of flavonols to inhibit chemiluminescence,” Journal of Ethnopharmacology, vol. 41, no. 1-2, pp. 121–126, 1994. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Silici and S. Kutluca, “Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region,” Journal of Ethnopharmacology, vol. 99, no. 1, pp. 69–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Krol, S. Scheller, J. Shani, G. Pietsz, and Z. Czuba, “Synergistic effect of ethanolic extract of propolis and antibiotics on the growth of Staphylococcus aureus,” Drug Research, vol. 43, no. 5, pp. 607–609, 1993. View at Google Scholar · View at Scopus
  43. L. Drago, B. Mombelli, E. De Vecchi, M. C. Fassina, L. Tocalli, and M. R. Gismondo, “In vitro antimicrobial activity of propolis dry extract,” Journal of Chemotherapy, vol. 12, no. 5, pp. 390–395, 2000. View at Google Scholar · View at Scopus
  44. H. Koo, P. L. Rosalen, J. A. Cury, Y. K. Park, M. Ikegaki, and A. Sattler, “Effect of Apis mellifera Propolis from two Brazilian regions on caries development in desalivated rats,” Caries Research, vol. 33, no. 5, pp. 393–400, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Koo, S. K. Pearson, K. Scott-Anne et al., “Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats,” Oral Microbiology and Immunology, vol. 17, no. 6, pp. 337–343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Duarte, P. L. Rosalen, M. F. Hayacibara et al., “The influence of a novel propolis on mutans streptococci biofilms and caries development in rats,” Archives of Oral Biology, vol. 51, no. 1, pp. 15–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. M. F. Hayacibara, H. Koo, P. L. Rosalen et al., “In vitro and in vivo effects of isolated fractions of Brazilian propolis on caries development,” Journal of Ethnopharmacology, vol. 101, no. 1–3, pp. 110–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. C. Murray, H. V. Worthington, and A. S. Blinkhorn, “A study to investigate the effect of a propolis-containing mouthrinse on the inhibition of de novo plaque formation,” Journal of Clinical Periodontology, vol. 24, no. 11, pp. 796–798, 1997. View at Google Scholar · View at Scopus
  49. M. J. Kim, C. S. Kim, B. H. Kim et al., “Antimicrobial effect of Korean Propolis against the mutans streptococci isolated from Korean,” Journal of Microbiology, vol. 49, no. 1, pp. 161–164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Vasquez, Y. Valdez, R. H. Gilman et al., “Metronidazole and clarithromycin resistance in Helicobacter pylori determined by measuring MICs of antimicrobial agents in color indicator egg yolk agar in a miniwell format,” Journal of Clinical Microbiology, vol. 34, no. 5, pp. 1232–1234, 1996. View at Google Scholar · View at Scopus
  51. D. M. Yajko, J. J. Madej, M. V. Lancaster et al., “Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 33, no. 9, pp. 2324–2327, 1995. View at Google Scholar · View at Scopus
  52. M. U. Shiloh, J. Ruan, and C. Nathan, “Evaluation of bacterial survival and phagocyte function with a fluorescence-based microplate assay,” Infection and Immunity, vol. 65, no. 8, pp. 3193–3198, 1997. View at Google Scholar · View at Scopus
  53. E. A. Ophori, B. N. Eriagbonye, and P. Ugbodaga, “Antimicrobial activity of propolis against Streptococcus mutans,” African Journal of Biotechnology, vol. 9, no. 31, pp. 4966–4969, 2010. View at Google Scholar · View at Scopus
  54. M. Feres, L. C. Figueiredo, I. M. Barreto, M. H. Coelho, M. W. Araujo, and S. C. Cortelli, “In vitro antimicrobial activity of plant extracts and propolis in saliva samples of healthy and periodontally-involved subjects,” Journal of the International Academy of Periodontology, vol. 7, no. 3, pp. 90–96, 2005. View at Google Scholar · View at Scopus
  55. H. Koo, P. L. Rosalen, J. A. Cury et al., “Effect of a new variety of Apis mellifera propolis on mutans streptococci,” Current Microbiology, vol. 41, no. 3, pp. 192–196, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Dodwad and B. J. Kukreja, “Propolis mouthwash: a new beginning,” Journal of Indian Society of Periodontology, vol. 15, no. 2, pp. 121–125, 2001. View at Google Scholar
  57. S. Sonmez, L. Kirilmaz, M. Yucesoy, B. Yücel, and B. Yilmaz, “The effect of bee propolis on oral pathogens and human gingival fibroblasts,” Journal of Ethnopharmacology, vol. 102, no. 3, pp. 371–376, 2005. View at Publisher · View at Google Scholar · View at Scopus