Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 705121, 17 pages
http://dx.doi.org/10.1155/2013/705121
Review Article

Multiple Molecular and Cellular Mechanisms of Action of Lycopene in Cancer Inhibition

1Departamentos de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía (INNN), C.P. 14269, Mexico City, DF, Mexico
2Neurobiología Molecular y Celular INNN-UNAM, Instituto Nacional de Neurología y Neurocirugía (INNN), C.P. 14269, Mexico City, DF, Mexico
3Facultad de Química, Universidad Nacional Autónoma de México (UNAM), C.P. 04510, Mexico City, DF, Mexico
4Unidad Periferica de NeuroCiencias INNN-UNAM, Instituto Nacional de Neurología y Neurocirugía (INNN), C.P. 14269, Mexico City, DF, Mexico
5Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), C.P. 04510, Mexico City, DF, Mexico
6Neuroquimica, Instituto Nacional de Neurología y Neurocirugía (INNN), C.P. 14269, Mexico City, DF, Mexico

Received 25 March 2013; Revised 5 June 2013; Accepted 19 June 2013

Academic Editor: Yew-Min Tzeng

Copyright © 2013 Cristina Trejo-Solís et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. C. Pitot, “The molecular biology of carcinogenesis,” Cancer, vol. 72, supplement 3, pp. 962–970, 1993. View at Google Scholar · View at Scopus
  2. H. Mukhtar and N. Ahmad, “Cancer chemoprevention: future holds in multiple agents,” Toxicology and Applied Pharmacology, vol. 158, no. 3, pp. 207–210, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Manson, “Cancer prevention—the potential for diet to modulate molecular signalling,” Trends in Molecular Medicine, vol. 9, no. 1, pp. 11–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Ahmad, S. K. Katiyard, and H. Mukhtar, “Cancer chemoprevention by tea polyphenols,” in Nutrition and Chemical Toxicity, C. loannides, Ed., pp. 301–344, John Wiley & Sons, Chichester, UK, 1998. View at Google Scholar
  5. Y.-J. Surh, “Cancer chemoprevention with dietary phytochemicals,” Nature Reviews Cancer, vol. 3, no. 10, pp. 768–780, 2003. View at Google Scholar · View at Scopus
  6. A. Challa, N. Ahmad, and H. Mukhtar, “Cancer prevention through sensible nutrition (commentary),” International Journal of Oncology, vol. 11, no. 6, pp. 1387–1392, 1997. View at Google Scholar · View at Scopus
  7. M. B. Sporn and K. T. Liby, “Cancer chemoprevention: scientific promise, clinical uncertainty,” Nature Clinical Practice Oncology, vol. 2, no. 10, pp. 518–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Chen, Z. Pu, Y. Xiao et al., “Lycopene synthesis via tri-cistronic expression of LeGGPS2, LePSY1 and crtI in Escherichia coli,” Sheng Wu Gong Cheng Xue Bao, vol. 28, no. 7, pp. 823–833, 2012. View at Google Scholar
  9. J. A. Olson and N. I. Krinsky, “Introduction: the colorful, fascinating world of the carotenoids: important physiologic modulators,” The Journal of the Federation of American Societies for Experimental Biology, vol. 9, no. 15, pp. 1547–1550, 1995. View at Google Scholar · View at Scopus
  10. S. K. Clinton, “Lycopene: chemistry, biology, and implications for human health and disease,” Nutrition Reviews, vol. 56, no. 2, part 1, pp. 35–51, 1998. View at Google Scholar · View at Scopus
  11. L. H. Tonucci, J. M. Holden, G. R. Beecher, F. Khachik, C. S. Davis, and G. Mulokozi, “Carotenoid content of thermally processed tomato-based food products,” Journal of Agricultural and Food Chemistry, vol. 43, no. 3, pp. 579–586, 1995. View at Google Scholar · View at Scopus
  12. A. R. Mangels, J. M. Holden, G. R. Beecher, M. R. Forman, and E. Lanza, “Carotenoid content of fruits and vegetables: an evaluation of analytic data,” Journal of the American Dietetic Association, vol. 93, no. 3, pp. 284–296, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Giovannucci, “Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature,” Journal of the National Cancer Institute, vol. 91, no. 4, pp. 317–331, 1999. View at Google Scholar · View at Scopus
  14. J. F. Dorgan, A. Sowell, C. A. Swanson et al., “Relationships of serum carotenoids, retinol, α-tocopherol, and selenium with breast cancer risk: results from a prospective study in Columbia, Missouri (United States),” Cancer Causes and Control, vol. 9, no. 1, pp. 89–97, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. V. A. Kirsh, S. T. Mayne, U. Peters et al., “A prospective study of lycopene and tomato product intake and risk of prostate cancer,” Cancer Epidemiology, Biomarkers & Prevention, vol. 15, no. 1, pp. 92–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Hausladen and J. S. Stamler, “Nitrosative stress,” Methods in Enzymology, vol. 300, pp. 389–395, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Halliwell and O. I. Aruoma, “DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems,” Federation of European Biochemical Societies Letter, vol. 281, no. 1-2, pp. 9–19, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. B. N. Ames, “Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases,” Science, vol. 221, no. 4617, pp. 1256–1264, 1983. View at Google Scholar · View at Scopus
  19. N. I. Krinsky, “Mechanism of action of biological antioxidants,” Proceedings of the Society for Experimental Biology and Medicine, vol. 200, no. 2, pp. 248–254, 1992. View at Google Scholar · View at Scopus
  20. P. di Mascio, S. Kaiser, and H. Sies, “Lycopene as the most efficient biological carotenoid singlet oxygen quencher,” Archives of Biochemistry and Biophysics, vol. 274, no. 2, pp. 532–538, 1989. View at Google Scholar · View at Scopus
  21. N. I. Krinsky, “The antioxidant and biological properties of the carotenoids,” Annals of the New York Academy of Sciences, vol. 854, pp. 443–447, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Bast, G. R. M. M. Haenen, R. van den Berg, and H. van den Berg, “Antioxidant effects of carotenoids,” International Journal for Vitamin and Nutrition Research, vol. 68, no. 6, pp. 399–403, 1998. View at Google Scholar · View at Scopus
  23. H. R. Matos, P. di Mascio, and M. H. G. Medeiros, “Protective effect of lycopene on lipid peroxidation and oxidative DNA damage in cell culture,” Archives of Biochemistry and Biophysics, vol. 383, no. 1, pp. 56–59, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Rizwan, I. Rodriguez-Blanco, A. Harbottle, M. A. Birch-Machin, R. E. B. Watson, and L. E. Rhodes, “Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial,” British Journal of Dermatology, vol. 164, no. 1, pp. 154–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Muzandu, M. Ishizuka, K. Q. Sakamoto et al., “Effect of lycopene and β-carotene on peroxynitrite-mediated cellular modifications,” Toxicology and Applied Pharmacology, vol. 215, no. 3, pp. 330–340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Liu, N. Pajkovic, Y. Pang et al., “Absorption and subcellular localization of lycopene in human prostate cancer cells,” Molecular Cancer Therapeutics, vol. 5, no. 11, pp. 2879–2885, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Ben-Dor, M. Steiner, L. Gheber et al., “Carotenoids activate the antioxidant response element transcription system,” Molecular Cancer Therapeutics, vol. 4, no. 1, pp. 177–186, 2005. View at Google Scholar · View at Scopus
  28. B. Velmurugan, V. Bhuvaneswari, and S. Nagini, “Antiperoxidative effects of lycopene during N-methyl-N′-nitro-N-nitrosoguanidine-induced gastric carcinogenesis,” Fitoterapia, vol. 73, no. 7-8, pp. 604–611, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Bhuvaneswari, B. Velmurugan, S. Balasenthil, C. R. Ramachandran, and S. Nagini, “Chemopreventive efficacy of lycopene on 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis,” Fitoterapia, vol. 72, no. 8, pp. 865–874, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. S. B. Cullinan, J. D. Gordan, J. Jin, J. W. Harper, and J. A. Diehl, “The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase,” Molecular and Cellular Biology, vol. 24, no. 19, pp. 8477–8486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. T. W. Kensler, N. Wakabayashi, and S. Biswal, “Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 89–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Lian and X.-D. Wang, “Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells,” International Journal of Cancer, vol. 123, no. 6, pp. 1262–1268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Itoh, K. I. Tong, and M. Yamamoto, “Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles,” Free Radical Biology and Medicine, vol. 36, no. 10, pp. 1208–1213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Zhang and H. J. Forman, “Acrolein induces heme oxygenase-1 through PKC-δ and PI3K in human bronchial epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 38, no. 4, pp. 483–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Papaiahgari, Q. Zhang, S. R. Kleeberger, H.-Y. Cho, and S. P. Reddy, “Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS-EGFR-P13K-Akt/ERK MAP kinase signaling in pulmonary epithelial cells,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 43–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, Garland Science, New York, NY, USA, 4th edition, 2002.
  37. F. Folli, L. Bonfanti, E. Renard, C. R. Kahn, and A. Merighi, “Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system,” Journal of Neuroscience, vol. 14, no. 11, part 1, pp. 6412–6422, 1994. View at Google Scholar · View at Scopus
  38. J. I. Jones and D. R. Clemmons, “Insulin-like growth factors and their binding proteins: biological actions,” Endocrine Reviews, vol. 16, no. 1, pp. 3–34, 1995. View at Google Scholar · View at Scopus
  39. J. DiGiovanni, K. Kiguchi, A. Frijhoff et al., “Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3455–3460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Giovannucci, “Insulin-like growth factor-1 (IGF-1) and IGF binding protein-3 (IGFBP-3) and risk of cancer,” Hormone Research, vol. 51, pp. 34–41, 1999. View at Google Scholar
  41. J. Levy, E. Bosin, B. Feldman et al., “Lycopene is a more potent inhibitor of human cancer cell proliferation than either α-carotene or β-carotene,” Nutrition and Cancer, vol. 24, no. 3, pp. 257–266, 1995. View at Google Scholar · View at Scopus
  42. A. Vrieling, D. W. Voskuil, J. M. Bonfrer et al., “Lycopene supplementation elevates circulating insulin-like growth factor- binding protein-1 and -2 concentrations in persons at greater risk of colorectal cancer,” The American Journal of Clinical Nutrition, vol. 86, no. 5, pp. 1456–1462, 2007. View at Google Scholar · View at Scopus
  43. C. Liu, F. Lian, D. E. Smith, R. M. Russell, and X.-D. Wang, “Lycopene supplementation inhibits lung squamous metaplasia and induces apoptosis via up-regulating insulin-like growth factor-binding protein 3 in cigarette smoke-exposed ferrets,” Cancer Research, vol. 63, no. 12, pp. 3138–3144, 2003. View at Google Scholar · View at Scopus
  44. Y. Tang, B. Parmakhtiar, A. R. Simoneau et al., “Lycopene enhances docetaxel's effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels,” Neoplasia, vol. 13, no. 2, pp. 108–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. C.-H. Heldin, U. Eriksson, and A. Östman, “New members of the platelet-derived growth factor family of mitogens,” Archives of Biochemistry and Biophysics, vol. 398, no. 2, pp. 284–290, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. R. V. Hoch and P. Soriano, “Roles of PDGF in animal development,” Development, vol. 130, no. 20, pp. 4769–4784, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. H.-M. Lo, C.-F. Hung, Y.-L. Tseng, B.-H. Chen, J.-S. Jian, and W.-B. Wu, “Lycopene binds PDGF-BB and inhibits PDGF-BB-induced intracellular signaling transduction pathway in rat smooth muscle cells,” Biochemical Pharmacology, vol. 74, no. 1, pp. 54–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Li, J. Fan, M. Chen et al., “Mechanism of human dermal fibroblast migration driven by type I collagen and platelet-derived growth factor-BB,” Molecular Biology of the Cell, vol. 15, no. 1, pp. 294–309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. C.-P. Chen, C.-F. Hung, S.-C. Lee, H.-M. Lo, P.-H. Wu, and W.-B. Wu, “Lycopene binding compromised PDGF-AA/-AB signaling and migration in smooth muscle cells and fibroblasts: prediction of the possible lycopene binding site within PDGF,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 381, no. 5, pp. 401–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. H.-S. Chiang, W.-B. Wu, J.-Y. Fang et al., “Lycopene inhibits PDGF-BB-induced signaling and migration in human dermal fibroblasts through interaction with PDGF-BB,” Life Sciences, vol. 81, no. 21-22, pp. 1509–1517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Shibuya, “Structure and function of VEGF/VEGF-receptor system involved in angiogenesis,” Cell Structure and Function, vol. 26, no. 1, pp. 25–35, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Risau, “Mechanisms of angiogenesis,” Nature, vol. 386, no. 6626, pp. 671–674, 1997. View at Google Scholar · View at Scopus
  53. M. Şahin, E. Şahin, and S. Gümüşlü, “Effects of lycopene and apigenin on human umbilical vein endothelial cells in vitro under angiogenic stimulation,” Acta Histochemica, vol. 114, no. 2, pp. 94–100, 2012. View at Publisher · View at Google Scholar
  54. C.-M. Yang, Y.-T. Yen, C.-S. Huang, and M.-L. Hu, “Growth inhibitory efficacy of lycopene and β-carotene against androgen-independent prostate tumor cells xenografted in nude mice,” Molecular Nutrition & Food Research, vol. 55, no. 4, pp. 606–612, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. M. L. Chen, Y. H. Lin, C. M. Yang, and M. L. Hu, “Lycopene inhibis angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-AKT and ERK/p38 signaling pathways,” Molecular Nutrition & Food Research, vol. 56, no. 5, pp. 889–899, 2012. View at Publisher · View at Google Scholar
  56. A. W. Murray, “Recycling the cell cycle: cyclins revisited,” Cell, vol. 116, no. 2, pp. 221–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. J. P. Alao, “The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention,” Molecular Cancer, vol. 6, article 24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. C. J. Sherr, “The pezcoller lecture: cancer cell cycles revisited,” Cancer Research, vol. 60, no. 14, pp. 3689–3695, 2000. View at Google Scholar · View at Scopus
  59. Y. O. Park, E.-S. Hwang, and T. W. Moon, “The effect of lycopene on cell growth and oxidative DNA damage of Hep3B human hepatoma cells,” BioFactors, vol. 23, no. 3, pp. 129–139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Nahum, K. Hirsch, M. Danilenko et al., “Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27Kip1 in the cyclin E-cdk2 complexes,” Oncogene, vol. 20, no. 26, pp. 3428–3436, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Nahum, L. Zeller, M. Danilenko et al., “Lycopene inhibition of IGF-induced cancer cell growth depends on the level of cyclin D1,” European Journal of Nutrition, vol. 45, no. 5, pp. 275–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Karas, H. Amir, D. Fishman et al., “Lycopene interferes with cell cycle progression and insulin-like growth factor I signaling in mammary cancer cells,” Nutrition and Cancer, vol. 36, no. 1, pp. 101–111, 2000. View at Google Scholar · View at Scopus
  63. P. Palozza, M. Colangelo, R. Simone et al., “Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines,” Carcinogenesis, vol. 31, no. 10, pp. 1813–1821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. C.-C. Chang, W.-C. Chen, T.-F. Ho, H.-S. Wu, and Y.-H. Wei, “Development of natural anti-tumor drugs by microorganisms,” Journal of Bioscience and Bioengineering, vol. 111, no. 5, pp. 501–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Wang, H. Fukushima, H. Inuzuka et al., “Skp2 is a promising therapeutic target in breast cancer,” Frontiers in Oncology, vol. 1, no. 57, pii 18702, 2012. View at Publisher · View at Google Scholar
  66. F. Lian, D. E. Smith, H. Ernst, R. M. Russell, and X.-D. Wang, “Apo-10′-lycopenoic acid inhibits lung cancer cell growth in vitro, and suppresses lung tumorigenesis in the A/J mouse model in vivo,” Carcinogenesis, vol. 28, no. 7, pp. 1567–1574, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. N. A. Ford, A. C. Elsen, K. Zuniga, B. L. Lindshield, and J. W. Erdman Jr., “Lycopene and apo-12′-lycopenal reduce cell proliferation and alter cell cycle progression in human prostate cancer cells,” Nutrition and Cancer, vol. 63, no. 2, pp. 256–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. D. R. Green and G. Kroemer, “The pathophysiology of mitochondrial cell death,” Science, vol. 305, no. 5684, pp. 626–629, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Sandu, E. Gavathiotis, T. Huang, I. Wegorzewska, and M. H. Werner, “A mechanism for death receptor discrimination by death adaptors,” The Journal of Biological Chemistry, vol. 280, no. 36, pp. 31974–31980, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Lüschen, M. Falk, G. Scherer, S. Ussat, M. Paulsen, and S. Adam-Klages, “The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNF-induced activation of ERK,” Experimental Cell Research, vol. 310, no. 1, pp. 33–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. M. MacFarlane and A. C. Williams, “Apoptosis and disease: a life or death decision,” European Molecular Biology Organitation Reports, vol. 5, no. 7, pp. 674–678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. A. M. Verhagen and D. L. Vaux, “Cell death regulation by the mammalian IAP antagonist Diablo/Smac,” Apoptosis, vol. 7, no. 2, pp. 163–166, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Haupt, M. Berger, Z. Goldberg, and Y. Haupt, “Apoptosis—the p53 network,” Journal of Cell Science, vol. 116, part 20, pp. 4077–4085, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. F.-Y. Tang, H.-J. Cho, M.-H. Pai, and Y.-H. Chen, “Concomitant supplementation of lycopene and eicosapentaenoic acid inhibits the proliferation of human colon cancer cells,” The Journal of Nutritional Biochemistry, vol. 20, no. 6, pp. 426–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. B. Velmurugan, A. Mani, and S. Nagini, “Combination of S-allylcysteine and lycopene induces apoptosis by modulating Bcl-2, Bax, Bim and caspases during experimental gastric carcinogenesis,” European Journal of Cancer Prevention, vol. 14, no. 4, pp. 387–393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Zhang, E. Kotake-Nara, H. Ono, and A. Nagao, “A novel cleavage product formed by autoxidation of lycopene induces apoptosis in HL-60 cells,” Free Radical Biology and Medicine, vol. 35, no. 12, pp. 1653–1663, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. J. J. Wakshlag and C. E. Balkman, “Effects of lycopene on proliferation and death of canine osteosarcoma cells,” American Journal of Veterinary Research, vol. 71, no. 11, pp. 1362–1370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. H. L. Hantz, L. F. Young, and K. R. Martin, “Physiologically attainable concentrations of lycopene induce mitochondrial apoptosis in LNCaP human prostate cancer cells,” Experimental Biology and Medicine, vol. 230, no. 3, pp. 171–179, 2005. View at Google Scholar · View at Scopus
  79. K. Sahin, M. Tuzcu, N. Sahin et al., “Inhibitory effects of combination of lycopene and genistein on 7,12- Dimethyl benz(a)anthracene-induced breast cancer in rats,” Nutrition and Cancer, vol. 63, no. 8, pp. 1279–1286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Wang and L. Zhang, “Effect of lycopene on proliferation and cell cycle of hormone refractory prostate cancer PC-3 cell line,” Wei Sheng Yan Jiu, vol. 36, no. 5, pp. 575–578, 2007. View at Google Scholar · View at Scopus
  81. P. Palozza, S. Serini, A. Boninsegna et al., “The growth-inhibitory effects of tomatoes digested in vitro in colon adenocarcinoma cells occur through down regulation of cyclin D1, Bcl-2 and Bcl-xL,” British Journal of Nutrition, vol. 98, no. 4, pp. 789–795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Palozza, A. Sheriff, S. Serini et al., “Lycopene induces apoptosis in immortalized fibroblasts exposed to tobacco smoke condensate through arresting cell cycle and down-regulating cyclin D1, pAKT and pBad,” Apoptosis, vol. 10, no. 6, pp. 1445–1456, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Tang, B. Parmakhtiar, A. R. Simoneau et al., “Lycopene enhances docetaxel's effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels,” Neoplasia, vol. 13, no. 2, pp. 108–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. K. W. Hunter, N. P. S. Crawford, and J. Alsarraj, “Mechanisms of metastasis,” Breast Cancer Research, vol. 10, supplement 1, article S2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Bacac and I. Stamenkovic, “Metastatic cancer cell,” Annual Review of Pathology, vol. 3, pp. 221–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. S.-Y. Lin, W. Xia, J. C. Wang et al., “β-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4262–4266, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. W. J. Nelson and R. Nusse, “Convergence of Wnt, β-catenin, and cadherin pathways,” Science, vol. 303, no. 5663, pp. 1483–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. H.-S. Kim, C. Skurk, S. R. Thomas et al., “Regulation of angiogenesis by glycogen synthase kinase-3β,” The Journal of Biological Chemistry, vol. 277, no. 44, pp. 41888–41896, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. O. Tetsu and F. McCormick, “β-catenin regulates expression of cyclin D1 in colon carcinoma cells,” Nature, vol. 398, no. 6726, pp. 422–426, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. D. Gradl, M. Kühl, and D. Wedlich, “The Wnt/Wg signal transducer β-catenin controls fibronectin expression,” Molecular and Cellular Biology, vol. 19, no. 8, pp. 5576–5587, 1999. View at Google Scholar · View at Scopus
  91. R. E. Simone, M. Russo, A. Catalano et al., “Lycopene inhibits NF-KB-Mediated IL-8 expression and changes redox and PPARγ signalling in cigarette smoke-stimulated macrophages,” PLoS ONE, vol. 6, no. 5, article e19652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. D. Feng, W.-H. Ling, and R.-D. Duan, “Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-κB in macrophages,” Inflammation Research, vol. 59, no. 2, pp. 115–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. M. M. Rafi, P. N. Yadav, and M. Reyes, “Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells,” Journal of Food Science, vol. 72, no. 1, pp. S069–S074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. F.-Y. Tang, M.-H. Pai, and X.-D. Wang, “Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model,” Journal of Agricultural and Food Chemistry, vol. 59, no. 16, pp. 9011–9021, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. M.-C. Lin, F.-Y. Wang, Y.-H. Kuo, and F.-Y. Tang, “Cancer chemopreventive effects of lycopene: suppression of MMP-7 expression and cell invasion in human colon cancer cells,” Journal of Agricultural and Food Chemistry, vol. 59, no. 20, pp. 11304–11318, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. F.-Y. Tang, C.-J. Shih, L.-H. Cheng, H.-J. Ho, and H.-J. Chen, “Lycopene inhibits growth of human colon cancer cells via suppression of the Akt signaling pathway,” Molecular Nutrition & Food Research, vol. 52, no. 6, pp. 646–654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. E.-S. Hwang and H. J. Lee, “Inhibitory effects of lycopene on the adhesion, invasion, and migration of SK-Hep1 human hepatoma cells,” Experimental Biology and Medicine, vol. 231, no. 3, pp. 322–327, 2006. View at Google Scholar · View at Scopus
  98. C.-S. Huang, M.-K. Shih, C.-H. Chuang, and M.-L. Hu, “Lycopene inhibits cell migration and invasion and upregulates Nm23-H1 in a highly invasive hepatocarcinoma, SK-Hep-1 cells,” Journal of Nutrition, vol. 135, no. 9, pp. 2119–2123, 2005. View at Google Scholar · View at Scopus
  99. C.-S. Huang, J.-W. Liao, and M.-L. Hu, “Lycopene inhibits experimental metastasis of human hepatoma SK-Hep-1 cells in athymic nude mice,” Journal of Nutrition, vol. 138, no. 3, pp. 538–543, 2008. View at Google Scholar · View at Scopus
  100. C.-M. Yang, T.-Y. Hu, and M.-L. Hu, “Antimetastatic effects and mechanisms of apo-8′-lycopenal, an enzymatic metabolite of lycopene, against human hepatocellular carcinoma SK-Hep-1 cells,” Nutrition and Cancer, vol. 64, no. 2, pp. 274–285, 2012. View at Publisher · View at Google Scholar
  101. C.-S. Huang, Y.-E. Fan, C.-Y. Lin, and M.-L. Hu, “Lycopene inhibits matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1,” The Journal of Nutritional Biochemistry, vol. 18, no. 7, pp. 449–456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Mira, S. Mañes, R. A. Lacalle, G. Márquez, and A. C. Martínez, “Insulin-like growth factor I-triggered cell migration and invasion are mediated by matrix metalloproteinase-9,” Endocrinology, vol. 140, no. 4, pp. 1657–1664, 1999. View at Google Scholar · View at Scopus
  103. X. Liu, J. D. Allen, J. T. Arnold, and M. R. Blackman, “Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells,” Carcinogenesis, vol. 29, no. 4, pp. 816–823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. D. Altavilla, A. Bitto, F. Polito et al., “The combination of serenoa repens, selenium and lycopene is more effective than serenoa repens alone to prevent hormone dependent prostatic growth,” Journal of Urology, vol. 186, no. 4, pp. 1524–1529, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Molnár, N. Gyémánt, I. Mucsi et al., “Modulation of multidrug resistance and apoptosis of cancer cells by selected carotenoids,” In Vivo, vol. 18, no. 2, pp. 237–244, 2004. View at Google Scholar
  106. R. P. Warrell Jr., S. R. Frankel, W. H. Miller Jr. et al., “Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid),” The New England Journal of Medicine, vol. 324, no. 20, pp. 1385–1393, 1991. View at Google Scholar · View at Scopus
  107. S. Christakos, M. Raval-Pandya, R. P. Wernyj, and W. Yang, “Genomic mechanisms involved in the pleiotropic actions of 1,25-dihydroxyvitamin D3,” The Biochemical Journal, vol. 316, part 2, pp. 361–371, 1996. View at Google Scholar · View at Scopus
  108. H. Amir, M. Karas, J. Giat et al., “Lycopene and 1,25-dihydroxyvitamin D3 cooperate in the inhibition of cell cycle progression and induction of differentiation in HL-60 leukemic cells,” Nutrition and Cancer, vol. 33, no. 1, pp. 105–112, 1999. View at Google Scholar · View at Scopus
  109. F.-Y. Tang, M.-H. Pai, Y.-H. Kuo, and X.-D. Wang, “Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer,” Molecular Nutrition & Food Research, vol. 56, no. 10, pp. 1520–1531, 2012. View at Publisher · View at Google Scholar
  110. B. Velmurugan, V. Bhuvaneswari, U. K. Burra, and S. Nagini, “Prevention of N-methyl-N′-nitro-N-nitrosoguanidine and saturated sodium chloride-induced gastric carcinogenesis in Wistar rats by lycopene,” European Journal of Cancer Prevention, vol. 11, no. 1, pp. 19–26, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. A. L. Al-Malki, S. S. Moselhy, and M. Y. Refai, “Synergistic effect of lycopene and tocopherol against oxidative stress and mammary tumorigenesis induced by 7,12-dimethyl[a]benzanthracene in female rats,” Toxicology and Industrial Health, vol. 28, no. 6, pp. 542–548, 2012. View at Publisher · View at Google Scholar
  112. S. S. Moselhy and M. A. B. Al Mslmani, “Chemopreventive effect of lycopene alone or with melatonin against the genesis of oxidative stress and mammary tumors induced by 7,12 dimethyl(a)benzanthracene in sprague dawely female rats,” Molecular and Cellular Biochemistry, vol. 319, no. 1-2, pp. 175–180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. U. Siler, L. Barella, V. Spitzer et al., “Lycopene and vitamin E interfere with autocrine/paracrine loops in the Dunning prostate cancer model,” FASEB Journal, vol. 18, no. 9, pp. 1019–1021, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Dogukan, M. Tuzcu, C. A. Agca et al., “A tomato lycopene complex protects the kidney from cisplatin-induced injury via affecting oxidative stress as well as Bax, Bcl-2, and HSPs expression,” Nutrition and Cancer, vol. 63, no. 3, pp. 427–434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. R. Preet, P. Mohapatra, D. Das et al., “Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC,” Carcinogenesis, vol. 34, no. 2, pp. 277–286, 2013. View at Publisher · View at Google Scholar
  116. C.-M. Yang, Y.-L. Lu, H.-Y. Chen, and M.-L. Hu, “Lycopene and the LXRα agonist T0901317 synergistically inhibit the proliferation of androgen-independent prostate cancer cells via the PPARγ-LXRα-ABCA1 pathway,” The Journal of Nutritional Biochemistry, vol. 23, no. 9, pp. 1155–1162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  117. P. Palozza, A. Catalano, R. E. Simone, M. C. Mele, and A. Cittadini, “Effect of lycopene and tomato products on cholesterol metabolism,” Annals of Nutrition & Metabolism, vol. 61, no. 2, pp. 126–134, 2012. View at Publisher · View at Google Scholar
  118. C.-M. Yang, I.-H. Lu, H.-Y. Chen, and M.-L. Hu, “Lycopene inhibits the proliferation of androgen-dependent human prostate tumor cells through activation of PPARγ-LXRα-ABCA1 pathway,” The Journal of Nutritional Biochemistry, vol. 23, no. 1, pp. 8–17, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. B. Smith and H. Land, “Anticancer activity of the cholesterol exporter ABCA1 gene,” Cell Reports, vol. 2, no. 3, pp. 580–590, 2012. View at Google Scholar
  120. F. Andic, M. Garipagaoglu, E. Yurdakonar, N. Tuncel, and O. Kucuk, “Lycopene in the prevention of gastrointestinal toxicity of radiotherapy,” Nutrition and Cancer, vol. 61, no. 6, pp. 784–788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Srinivasan, N. Devipriya, K. B. Kalpana, and V. P. Menon, “Lycopene: an antioxidant and radioprotector against γ-radiation-induced cellular damages in cultured human lymphocytes,” Toxicology, vol. 262, no. 1, pp. 43–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. Z. Fazekas, D. Gao, R. N. Saladi, Y. Lu, M. Lebwohl, and H. Wei, “Protective effects of lycopene against ultraviolet B-induced photodamage,” Nutrition and Cancer, vol. 47, no. 2, pp. 181–187, 2003. View at Google Scholar · View at Scopus
  123. F. Camacho-Alonso, P. López-Jornet, and M. Tudela-Mulero, “Synergic effect of curcumin or lycopene with irradiation upon oral squamous cell carcinoma cells,” Oral Diseases, vol. 19, no. 5, pp. 465–472, 2013. View at Publisher · View at Google Scholar
  124. A. Tabassum, R. G. Bristow, and V. Venkateswaran, “Ingestion of selenium and other antioxidants during prostate cancer radiotherapy: a good thing?” Cancer Treatment Reviews, vol. 36, no. 3, pp. 230–234, 2010. View at Publisher · View at Google Scholar · View at Scopus