Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 737401, 9 pages
http://dx.doi.org/10.1155/2013/737401
Research Article

Antistress Effects of the Ethanolic Extract from Cymbopogon schoenanthus Growing Wild in Tunisia

1Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
2Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
3Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
4Laboratoire d’Adaptation des Plantes aux Stress Abiotiques, Centre de Biotechnologie à la Technopole de Borj-Cédria (CBBC), BP 901, 2050 Hammam-lif, Tunisia
5Arid Lands Institute, Range Ecology Laboratory, 4119 Medenine, Tunisia

Received 19 April 2013; Accepted 2 September 2013

Academic Editor: John R. S. Tabuti

Copyright © 2013 Mahmoud Ben Othman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Chrousos, “Stress as a medical and scientific idea and its implications,” Advances in Pharmacology, vol. 42, pp. 552–556, 1998. View at Google Scholar · View at Scopus
  2. I. Nijholt, N. Farchi, M. Kye et al., “Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation,” Molecular Psychiatry, vol. 9, no. 2, pp. 174–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Das, D. Rai, M. Dikshit, G. Palit, and C. Nath, “Nature of stress: differential effects on brain acetylcholinesterase activity and memory in rats,” Life Sciences, vol. 77, no. 18, pp. 2299–2311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Herman and W. E. Cullinan, “Neurocircuitary of stress, HPA axis,” Trends in Neurosciences, vol. 20, no. 2, pp. 78–84, 1997. View at Publisher · View at Google Scholar
  5. E. Badowska-Szalewska, I. Klejbor, T. Cecot, J. H. Spodnik, and J. Moryś, “Changes in NGF/c-Fos double staining in the structures of the limbic system in juvenile and aged rats exposed to forced swim test,” Acta Neurobiologiae Experimentalis, vol. 69, no. 4, pp. 448–458, 2009. View at Google Scholar · View at Scopus
  6. L. Wang, G. Muxin, H. Nishida, C. Shirakawa, S. Sato, and T. Konishi, “Psychological stress-induced oxidative stress as a model of sub-healthy condition and the effect of TCM,” Evidence-based Complementary and Alternative Medicine, vol. 4, no. 2, pp. 195–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hemanth Kumar, A. Tamatam, A. Pal, and F. Khanum, “Neuroprotective effects of Cyperusrotundus on SIN-1 induced nitric oxide generation and protein nitration: ameliorative effect against apoptosis mediated neuronal cell damage,” NeuroToxicology, vol. 34, pp. 150–159, 2013. View at Publisher · View at Google Scholar
  8. J. S. Shim, H. G. Kim, M. S. Ju, J. G. Choi, S. Y. Jeong, and M. S. Oh, “Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson's disease,” Journal of Ethnopharmacology, vol. 126, no. 2, pp. 361–365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. T. Hsieh, W. H. Peng, C. R. Wu, K. Y. Ng, C. L. Cheng, and H. X. Xu, “Review on experimental research of herbal medicines with anti-amnesic activity,” Planta Medica, vol. 76, no. 3, pp. 203–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. El Omri, J. Han, P. Yamada, K. Kawada, M. B. Abdrabbah, and H. Isoda, “Rosmarinus officinalis polyphenols activate cholinergic activities in PC12 cells through phosphorylation of ERK1/2,” Journal of Ethnopharmacology, vol. 131, no. 2, pp. 451–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Sasaki, A. El Omri, S. Kondo, J. Han, and H. Isoda, “Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation,” Behavioural Brain Research, vol. 238, pp. 86–94, 2013. View at Google Scholar
  12. L. C. Hsu, Y. J. Ko, H. Y. Cheng et al., “Antidepressant-like activity of the ethanolic extract from Uncaria lanosa Wallich var. appendiculata ridsd in the forced swimming test and in the tail suspension test in mice,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 497302, 12 pages, 2012. View at Publisher · View at Google Scholar
  13. W. Y. Lo, F. J. Tsai, C. H. Liu et al., “Uncaria rhynchophylla upregulates the expression of MIF and cyclophilin A in kainic acid-induced epilepsy rats: a proteomic analysis,” American Journal of Chinese Medicine, vol. 38, no. 4, pp. 745–759, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Carro-Juarez, J. F. Rodrıguez-Landa, M. D. L. Rodriguez-Pena, M. D. J. Rovirosa-Hernandez, and F. Garcia-Orduna, “The aqueous crude extract of Montanoa frutescens produces anxiolytic-like effects similarly to diazepam in Wistar rats: involvement of GABAA receptor,” Journal of Ethnopharmacology, vol. 143, no. 2, pp. 592–598, 2012. View at Publisher · View at Google Scholar
  15. M. Adams, F. Gmünder, and M. Hamburger, “Plants traditionally used in age related brain disorders-A survey of ethnobotanical literature,” Journal of Ethnopharmacology, vol. 113, no. 3, pp. 363–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. J. Hunt, H. F. Coelho, B. Wider et al., “Complementary and alternative medicine use in England: results from a national survey,” International Journal of Clinical Practice, vol. 64, no. 11, pp. 1496–1502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Mander, Marketing of Indigenous Medicinal Plants in South Africa, A Case Study in KwaZulu-Natal, FAO, Rome, Italy, 1998.
  18. D. S. Fabricant and N. R. Farnsworth, “The value of plants used in traditional medicine for drug discovery,” Environmental Health Perspectives, vol. 109, no. 1, pp. 69–75, 2001. View at Google Scholar · View at Scopus
  19. D. Rivera, C. Obón, M. Heinrich, C. Inocencio, A. Verde, and J. Fajardo, “Gathered Mediterranean food plants—ethnobotanical investigations and historical development,” Forum of Nutrition, vol. 59, pp. 18–74, 2006. View at Google Scholar · View at Scopus
  20. M. Neffati and A. Ouled Belgacem, A Multidisciplinary Study of Herbal, Medicinal and Aromatic Plants in Southern Tunisia: A New Approach, Regional Consultation on Linking Producers to Markets: Lessons Learned and Successful Practices, Cairo, Egypt, 2006.
  21. IUCN, A Guide to Medicinal Plants in North Africa, IUCN, Gland, Switzerland, 2005.
  22. E. Le Floc'h, Contribution à une Étude Ethnobotanique de la Flore Tunsienne, Programme Flore et Végétation tunisienne, Ministère del’Enseignement supérieur et de la Recherche scientifique, Tunis, 1983.
  23. A. Khadri, M. L. M. Serralheiro, J. M. F. Nogueira, M. Neffati, S. Smiti, and M. E. M. Araújo, “Antioxidant and antiacetylcholinesterase activities of essential oils from Cymbopogon schoenanthus L. Spreng. Determination of chemical composition by GC-mass spectrometry and 13C NMR,” Food Chemistry, vol. 109, no. 3, pp. 630–637, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Khadri, M. Neffati, S. Smiti et al., “Antioxidant, antiacetylcholinesterase and antimicrobial activities of Cymbopogon schoenanthus L. Spreng (lemon grass) from Tunisia,” LWT-Food Science and Technology, vol. 43, no. 2, pp. 331–336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. EL Omri, J. Han, M. Ben Abdrabbah, and H. Isoda, “Down regulation effect of Rosmarinus officinalis polyphenols on cellular stress proteins in rat pheochromocytoma PC12 cells,” Cytotechnology, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. T. Yi, Q. Xu, Y. C. Li, L. Yang, and L. D. Kong, “Antidepressant-like synergism of extracts from magnolia bark and ginger rhizome alone and in combination in mice,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, no. 4, pp. 616–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Steru, R. Chermat, B. Thierry, and P. Simon, “The tail suspension test: a new method for screening antidepressants in mice,” Psychopharmacology, vol. 85, no. 3, pp. 367–370, 1985. View at Google Scholar · View at Scopus
  28. R. D. Porsolt, A. Bertin, and M. Jalfre, “Behavioral despair in mice: a primary screening test for antidepressants,” Archives Internationales de Pharmacodynamie et de Therapie, vol. 229, no. 2, pp. 327–336, 1977. View at Google Scholar · View at Scopus
  29. N. G. Milton, “Role of hydrogen peroxide in the aetiology of Alzheimer's disease: implications for treatment,” Drugs and Aging, vol. 21, no. 2, pp. 81–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Zhao, C. Rosales, K. Seburn, D. Ron, and S. L. Ackerman, “Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjögren syndrome,” Human Molecular Genetics, vol. 19, no. 1, Article ID ddp464, pp. 25–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Garrido, S. Gurbuxani, L. Ravagnan, and G. Kroemer, “Heat shock proteins: endogenous modulators of apoptotic cell death,” Biochemical and Biophysical Research Communications, vol. 286, no. 3, pp. 433–442, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. A. P. Arrigo, S. Virot, S. Chaufour, W. Firdaus, C. Kretz-Remy, and C. Diaz-Latoud, “Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels,” Antioxidants and Redox Signaling, vol. 7, no. 3-4, pp. 414–424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Mehlen, C. Kretz-Remy, X. Préville, and A. Arrigo, “Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFα-induced cell death,” EMBO Journal, vol. 15, no. 11, pp. 2695–2706, 1996. View at Google Scholar · View at Scopus
  34. P. Rocchi, P. Jugpal, A. So et al., “Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro,” BJU International, vol. 98, no. 5, pp. 1082–1089, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. K. B. Kaplan and R. Li, “A prescription for “stress”-the role of Hsp90 in genome stability and cellular adaptation,” Trends in Cell Biology, vol. 22, no. 11, pp. 576–583, 2012. View at Google Scholar
  36. M. M. Blanco, C. A. R. A. Costa, A. O. Freire, J. G. Santos Jr., and M. Costa, “Neurobehavioral effect of essential oil of Cymbopogon citratus in mice,” Phytomedicine, vol. 16, no. 2-3, pp. 265–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. C. A. Costa, D. O. Kohn, V. M. De Lima, A. C. Gargano, J. C. Flório, and M. Costa, “The GABAergic system contributes to the anxiolytic-like effect of essential oil from Cymbopogon citratus (lemongrass),” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 828–836, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. L. J. Quintans-Júnior, T. T. Souza, B. S. Leite et al., “Phythochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents,” Phytomedicine, vol. 15, no. 8, pp. 619–624, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. E. Renard, E. Dailly, D. J. P. David, M. Hascoet, and M. Bourin, “Monoamine metabolism changes following the mouse forced swimming test but not the tail suspension test,” Fundamental and Clinical Pharmacology, vol. 17, no. 4, pp. 449–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. J. F. Cryan, C. Mombereau, and A. Vassout, “The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice,” Neuroscience and Biobehavioral Reviews, vol. 29, no. 4-5, pp. 571–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. L. T. Yi, J. M. Li, Y. C. Li, Y. Pan, Q. Xu, and L. D. Kong, “Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin,” Life Sciences, vol. 82, no. 13-14, pp. 741–751, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Xu, Z. Wang, W. You et al., “Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system,” European Neuropsychopharmacology, vol. 20, no. 6, pp. 405–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Aihara, I. Ida, N. Yuuki et al., “HPA axis dysfunction in unmedicated major depressive disorder and its normalization by pharmacotherapy correlates with alteration of neural activity in prefrontal cortex and limbic/paralimbic regions,” Psychiatry Research, vol. 155, no. 3, pp. 245–256, 2007. View at Publisher · View at Google Scholar · View at Scopus