Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 750986, 9 pages
Research Article

Prunus mume and Lithospermum erythrorhizon Extracts Synergistically Prevent Visceral Adiposity by Improving Energy Metabolism through Potentiating Hypothalamic Leptin and Insulin Signalling in Ovariectomized Rats

1Korea Institute of Oriental Medicine, 1672 Yoosungdaero, Yoosung-Gu, Daejeon 305-811, Republic of Korea
2Food & Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do 336-795, Republic of Korea

Received 12 April 2013; Revised 23 September 2013; Accepted 23 September 2013

Academic Editor: Jairo Kenupp Bastos

Copyright © 2013 Byoung-Seob Ko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We investigated the antiobesity and hypoglycemic properties of Prunus mume Sieb. et Zucc (PMA; Japanese apricot) and Lithospermum erythrorhizon Sieb. et Zucc (LES; gromwell) extracts in ovariectomized (OVX) rats that impaired energy and glucose homeostasis. OVX rats consumed either 5% dextrose, 5% PMA extract, 5% LES extract, or 2.5% PMA+2.5% LES extract in the high fat diet. After 8 weeks of treatment, PMA+LES prevented weight gain and visceral fat accumulation in OVX rats by lowering daily food intake and increasing energy expenditure and fat oxidation. PMA+LES prevented the attenuation of leptin and insulin signaling by increasing the expression of leptin receptor in the hypothalamus in OVX rats. PMA+LES significantly reversed the decrease of energy expenditure in OVX rats by increasing expression of UCP-1 in the brown adipose tissues and UCP-2 and UCP-3 in the quadriceps muscles. PMA+LES also increased CPT-1 expression and decreased FAS, ACC, and SREBP-1c in the liver and quadriceps muscles to result in reducing triglyceride accumulation. PMA+LES improved insulin sensitivity in OVX rats. In conclusion, PMA+LES synergistically prevented the impairment of energy, lipid, and glucose metabolism by OVX through potentiating hypothalamic leptin and insulin signaling. PMA+LES may be a useful intervention for alleviating the symptoms of menopause in women.