Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 769409, 8 pages
http://dx.doi.org/10.1155/2013/769409
Research Article

Proanthocyanidin Attenuation of Oxidative Stress and NF-κB Protects Apolipoprotein E-Deficient Mice against Diabetic Nephropathy

1Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2Chemistry Department, Faculty of Science, Minia University, EL-Minia 61519, Egypt
3Genetic Engineering and Biotechnology Institute, Minufiya University, Sadat City, Egypt

Received 11 January 2013; Revised 29 May 2013; Accepted 28 June 2013

Academic Editor: Srinivas Nammi

Copyright © 2013 Abdulrahman L. Al-Malki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Tuomilehto, K. Borch-Johnsen, A. Molarius et al., “Incidence of cardiovascular disease in Type 1 (insulin-dependent) diabetic subjects with and without diabetic nephropathy in Finland,” Diabetologia, vol. 41, no. 7, pp. 784–790, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. S.-H. Lee, S.-J. Heo, J.-Y. Hwang, J.-S. Han, and Y.-J. Jeon, “Protective effects of enzymatic digest from Ecklonia cava against high glucose-induced oxidative stress in human umbilical vein endothelial cells,” Journal of the Science of Food and Agriculture, vol. 90, no. 2, pp. 349–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Aljofan and H. Ding, “High glucose increases expression of cyclooxygenase-2, increases oxidative stress and decreases the generation of nitric oxide in mouse microvessel endothelial cells,” Journal of Cellular Physiology, vol. 222, no. 3, pp. 669–675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. A. R. Sayed, M. Khalifa, and F. F. Abd el-Latif, “Fenugreek attenuation of diabetic nephropathy in alloxan-diabetic rats—attenuation of diabetic nephropathy in rats,” Journal of Physiology and Biochemistry, vol. 68, no. 2, pp. 263–269, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. A. A. R. Saved, “Thymoquinone protects renal tubular cells against tubular injury,” Cell Biochemistry and Function, vol. 26, no. 3, pp. 374–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. Baynes and S. R. Thorpe, “Role of oxidative stress in diabetic complications: a new perspective on an old paradigm,” Diabetes, vol. 48, no. 1, pp. 1–9, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Morcos, A. Schlotterer, A. A. Sayed et al., “Rosiglitazone reduces angiotensin II and advanced glycation end product-dependent sustained nuclear factor-kappaB activation in cultured human proximal tubular epithelial cells,” Hormone and Metabolic Research, vol. 40, no. 11, pp. 752–759, 2008. View at Google Scholar · View at Scopus
  8. A. Al-Malki, “Oat attenuation of hyperglycemia-induced retinal oxidative stress and NF-κB activation in streptozotocin-induced diabetic rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 983923, 8 pages, 2013. View at Publisher · View at Google Scholar
  9. M. Morcos, A. A. R. Sayed, A. Bierhaus et al., “Activation of tubular epithelial cells in diabetic nephropathy,” Diabetes, vol. 51, no. 12, pp. 3532–3544, 2002. View at Google Scholar · View at Scopus
  10. R. F. Rosario and S. Prabhakar, “Lipids and diabetic nephropathy,” Current Diabetes Reports, vol. 6, no. 6, pp. 455–462, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. D. Riley and T. Dwyer, “Microalbuminuria is positively associated with usual dietary saturated fat intake and negatively associated with usual dietary protein intake in people with insulin-dependent diabetes mellitus,” American Journal of Clinical Nutrition, vol. 67, no. 1, pp. 50–57, 1998. View at Google Scholar · View at Scopus
  12. A. Sugisawa, S. Inoue, and K. Umegaki, “Grape seed extract prevents H2O2-induced chromosomal damage in human lymphoblastoid cells,” Biological and Pharmaceutical Bulletin, vol. 27, no. 9, pp. 1459–1461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. L. Nuttall, M. J. Kendall, E. Bombardelli, and P. Morazzoni, “An evaluation of the antioxidant activity of a standardized grape seed extract, Leucoselect,” Journal of Clinical Pharmacy and Therapeutics, vol. 23, no. 5, pp. 385–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Bagchi, A. Garg, R. L. Krohn et al., “Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice,” General Pharmacology, vol. 30, no. 5, pp. 771–776, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. A. A. Sayed, “Thymoquinone and proanthocyanidin attenuation of diabetic nephropathy in rats,” Europian Reviews For Medical and Pharmacological Science, vol. 16, no. 6, pp. 808–815, 2012. View at Google Scholar
  16. A. A. R. Sayed, “Proanthocyanidin protects against cisplatin-induced nephrotoxicity,” Phytotherapy Research, vol. 23, no. 12, pp. 1738–1741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Wen, S. Segerer, M. Dantas et al., “Renal injury in apolipoprotein E-deficient mice,” Laboratory Investigation, vol. 82, no. 8, pp. 999–1006, 2002. View at Google Scholar · View at Scopus
  18. H. Kromann, M. Christy, and A. Lernmark, “The low dose streptozotocin murine model of type 1 (insulin-dependent) diabetes mellitus: studies in vivo and in vitro of the modulating effect of sex hormones,” Diabetologia, vol. 22, no. 3, pp. 194–198, 1982. View at Google Scholar · View at Scopus
  19. I. Erdelyi, N. Levenkova, E. Y. Lin et al., “Western-style diets induce oxidative stress and dysregulate immune responses in the colon in a mouse model of sporadic colon cancer,” Journal of Nutrition, vol. 139, no. 11, pp. 2072–2078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. A. R. Sayed, “Ferulsinaic acid modulates SOD, GSH and antioxidant enzymes in diabetic kidney,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 580104, 9 pages, 2012. View at Publisher · View at Google Scholar
  21. M. Nishikimi, N. Appaji Rao, and K. Yagi, “The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen,” Biochemical and Biophysical Research Communications, vol. 46, no. 2, pp. 849–854, 1972. View at Google Scholar · View at Scopus
  22. R. A. Mekheimer, A. A. Sayed, and E. Ahmed, “Novel 1,2,4-Triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of caenorhabiditis elegans,” Journal of Medecinal Chemistry, vol. 55, pp. 4169–4177, 2012. View at Publisher · View at Google Scholar
  23. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 355–358, 1979. View at Google Scholar · View at Scopus
  24. M. S. Moron, J. W. Depierre, and B. Mannervik, “Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver,” Biochimica et Biophysica Acta, vol. 582, no. 1, pp. 67–78, 1979. View at Google Scholar · View at Scopus
  25. T. Matsubasa, T. Uchino, S. Karashima, M. Tanimura, and F. Endo, “Oxidative stress in very low birth weight infants as measured by urinary 8-OHdG,” Free Radical Research, vol. 36, no. 2, pp. 189–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Schlotterer, G. Kukudov, F. Bozorgmehr et al., “C. elegans as model for the study of high glucose-mediated life span reduction,” Diabetes, vol. 58, no. 11, pp. 2450–2456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. A. R. Sayed, K. M. El-Shaieb, and A.-F. E. Mourad, “Life span extension of Caenorhabditis elegans by novel pyridoperimidine derivative,” Archives of Pharmacal Research, vol. 35, no. 1, pp. 69–76, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. A. A. R. Sayed, “Ferulsinaic acid attenuation of advanced glycation end products extends the lifespan of Caenorhabditis elegans,” Journal of Pharmacy and Pharmacology, vol. 63, no. 3, pp. 423–428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Fukuzawa, Y. Watanabe, D. Inaguma, and N. Hotta, “Evaluation of glomerular lesion and abnormal urinary findings in OLETF rats resulting from a long-term diabetic state,” Journal of Laboratory and Clinical Medicine, vol. 128, no. 6, pp. 568–578, 1996. View at Google Scholar · View at Scopus
  30. K. Winiarska, D. Malinska, K. Szymanski, M. Dudziak, and J. Bryla, “Lipoic acid ameliorates oxidative stress and renal injury in alloxan diabetic rabbits,” Biochimie, vol. 90, no. 3, pp. 450–459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. A. Sayed, “Ferulsinaic acid attenuation of diabetic nephropathy,” European Journal of Clinical Investigation, vol. 43, no. 1, pp. 56–63, 2013. View at Google Scholar
  32. S. Jacob, K. Rett, E. J. Henriksen, and H.-U. Häring, “Thioctic acid—effects on insulin sensitivity and glucose-metabolism,” BioFactors, vol. 10, no. 2-3, pp. 169–174, 1999. View at Google Scholar · View at Scopus
  33. J. D. Morrow and L. J. Roberts, “The isoprostanes: unique bioactive products of lipid peroxidation,” Progress in Lipid Research, vol. 36, no. 1, pp. 1–21, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. M. F. Melhem, P. A. Craven, J. Liachenko, and F. R. DeRubertis, “α-lipoic acid attenuates hyperglycemia and prevents glomerular mesangial matrix expansion in diabetes,” Journal of the American Society of Nephrology, vol. 13, no. 1, pp. 108–116, 2002. View at Google Scholar · View at Scopus
  35. M. K. Shigenaga, T. M. Hagen, and B. N. Ames, “Oxidative damage and mitochondrial decay in aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 23, pp. 10771–10778, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Brownlee, “The pathobiology of diabetic complications: a unifying mechanism,” Diabetes, vol. 54, no. 6, pp. 1615–1625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Shinohara, P. J. Thornalley, I. Giardino et al., “Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis,” Journal of Clinical Investigation, vol. 101, no. 5, pp. 1142–1147, 1998. View at Google Scholar · View at Scopus
  38. I.-M. Liu, T.-F. Tzeng, S.-S. Liou, and C. J. Chang, “Beneficial effect of traditional chinese medicinal formula Danggui-Shaoyao-San on advanced glycation end-product-mediated renal injury in streptozotocin-diabetic rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 140103, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus