Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 795072, 14 pages
http://dx.doi.org/10.1155/2013/795072
Research Article

Immunomodulatory Role of an Ayurvedic Formulation on Imbalanced Immunometabolics during Inflammatory Responses of Obesity and Prediabetic Disease

Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India

Received 6 March 2013; Accepted 13 August 2013

Academic Editor: Ravirajsinh Jadeja

Copyright © 2013 Kamiya Tikoo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary Material

Figure S1. Dose dependent effect of Kal-1 on mean body weights of mice fed on HFHSD at week 21. All doses (0.04 - 300 μL) of Kal-1 were supplemented along with HFHSD. Here, the abbreviations mean: LF: Low fat control, HF: High fat high sugar control. All the values represent mean ± SEM from five animals.

Figure S2. Comparison of LF control and HFHSD control with their respective gavage control groups at week 21. Here, the abbreviations mean: LF: Low fat control, HF: High fat high sugar control. All the values represent mean ± SEM from five animals.

Figure S3. Feed consumption in pair feeding experiment a) at week 12 b) at week 21. Amount of Kal-1 was 2 μL/gm body weight of mice. Here, the abbreviations mean: LF: Low fat control, HF: High fat high sugar control, PF: Pair-fed. All the values represent mean ± SEM from five animals.

Figure S4. Body weights in pair feeding experiment from week 15, 17, 19 and 21. Amount of Kal-1 was 2 μL/gm body weight of mice. Here, the abbreviations mean: LF: Low fat control, HF: High fat high sugar control, PF: Pair-fed. All the values represent mean ± SEM from five animals.

Figure S5. Rectal temperature profile from week 15, 17, 19 and 21. Amount of Kal-1 was 2 μL/gm body weight of mice. Here, the abbreviations mean: LF: Low fat control, HF: High fat high sugar control, PF: Pair-fed. All the values represent mean ± SEM from five animals.

Figure S6. Week wise effect of Kal-1 on fasting blood glucose in high fat high sugar fed mice. All doses ranging from 0.04 μL to 75 μL of Kal-1 were supplemented along with HFHSD. Here, the abbreviations mean: LF: Low fat control, HF: High fat high sugar control. All the values represent mean ± SEM from five animals.

Figure S7. Effect of Kal-1 treatment on different biochemical parameters viz. a) HDL b) LDL c) Cholesterol d) Triglycerides in high fat high sugar diet fed mice at week 21 and 26. Treatment with all doses (5, 20 and 75 μL) of Kal-1 was started only after 21 weeks (induction period) along with HFHSD. Here, the abbreviations mean: LF: Low fat control, HF: High fat high sugar control. All the values represent mean ± SEM from five animals.

Figure S8. Effect of Kal-1 treatment on fasting insulin levels in HFHSD fed mice a) at week 21 b) at week 26. Treatment with all doses (5, 20 and 75 μL) of Kal-1 was started only after 21 week (induction period) along with high fat high sugar diet. Here, the abbreviations mean: LF: Low fat control, HF: High fat high sugar control. All the values represent mean ± SEM from five animals.

Figure S9. Preparation procedure of Kal-1

Table S1. Composition of Kal-1

  1. Supplementary Figures
  2. Supplementary Table