Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 795365, 12 pages
Research Article

Postischemic Long-Term Treatment with Qiangli Tianma Duzhong Capsule Improves Brain Functional Recovery via the Improvement of Hemorrheology and the Inhibition of Platelet Aggregation in a Rat Model of Focal Cerebral Ischemia

1Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
2ChunKe Guiyang Pharmaceutical R & D Co., Ltd., Guiyang 550018, China
3Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China

Received 13 June 2013; Accepted 19 August 2013

Academic Editor: Chris J. Branford-White

Copyright © 2013 Li-Zhi Hong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Qiangli Tianma Duzhong capsule (TMDZ), a Chinese herbal drug, is clinically used to improve functional outcome in patients with ischemic stroke in China. This study was conducted to establish whether postischemic long-term treatment with TMDZ could reduce the loss of injured hemisphere and confer the improvements of neurological outcome in chronic survival of rats with 2 h middle cerebral artery occlusion (MCAO)/reperfusion brain injury and its primary mechanisms. We found that TMDZ (44.5, 89, or 178 mg/kg), administered per os 6 h after the onset of ischemia and for 28 consecutive days, significantly improved the behavior deficits, beginning on day 7, and further improved later. TMDZ treatment also markedly reduced the tissue loss of the injured hemisphere and improved histopathology. In the meantime, TMDZ treatment could improve hemorrheology and inhibit platelet aggregation. These results provide the first evidence that post-ischemic long-term treatment with TMDZ confers the improvements of neurological outcome and the loss of injured hemisphere in an animal ischemic stroke model, and its mechanisms might be associated with the improvements of hemorrheology and the inhibition of platelet aggregation.