Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 808971, 9 pages
http://dx.doi.org/10.1155/2013/808971
Research Article

Hypothalamus-Related Resting Brain Network Underlying Short-Term Acupuncture Treatment in Primary Hypertension

1Department of Radiology, Beijing Tiantan Hospital Affiliated to Capital Medical University, Tiantan Xili No. 6, Beijing 100050, China
2Beijing Neurosurgery Institute, Tiantan Xili No. 6, Beijing 100050, China
3Department of Pain, Beijing Tiantan Hospital Affiliated to Capital Medical University, Tiantan Xili No. 6, Beijing 100050, China
4Department of Medicine, China North Vehicle Research Institute Worker’s Hospital, Huaishuling No. 4, Fengtai District, Beijing 100072, China
5Tiantan Community Health Service Center, Fenchang Hutong No. 57, Dongcheng District, Beijing 100061, China
6Ultrasonic Center, Beijing Tiantan Hospital Affiliated to Capital Medical University, Tiantan Xili No. 6, Beijing 100050, China
7Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
8The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China

Received 22 February 2013; Revised 31 March 2013; Accepted 11 April 2013

Academic Editor: Baixiao Zhao

Copyright © 2013 Hongyan Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, World Health Statistics 2012, World Health Organization, 2012.
  2. “NIH Consensus Conference, Acupuncture,” Journal of the American Medical Association, vol. 280, pp. 1518–1529, 1998.
  3. H. Huang and S. Liang, “Acupuncture at otoacupoint heart for treatment of vascular hypertension,” Journal of Traditional Chinese Medicine, vol. 12, no. 2, pp. 133–136, 1992. View at Google Scholar · View at Scopus
  4. Y. J. Chiu, A. Chi, and I. A. Reid, “Cardiovascular and endocrine effects of acupuncture in hypertensive patients,” Clinical and Experimental Hypertension, vol. 19, no. 7, pp. 1047–1063, 1997. View at Google Scholar · View at Scopus
  5. K. C. Tam and H. H. Yiu, “The effect of acupuncture on essential hypertension,” American Journal of Chinese Medicine, vol. 3, no. 4, pp. 369–375, 1975. View at Google Scholar · View at Scopus
  6. W. Guo and G. Ni, “The effects of acupuncture on blood pressure in different patients,” Journal of Traditional Chinese Medicine, vol. 23, no. 1, pp. 49–50, 2003. View at Google Scholar · View at Scopus
  7. J. D. Pandian, G. Toor, R. Arora et al., “Complementary and alternative medicine treatments among stroke patients in India,” Topics in Stroke Rehabilitation, vol. 19, no. 5, pp. 384–394, 2012. View at Google Scholar
  8. F. A. Flachskampf, J. Gallasch, O. Gefeller et al., “Randomized trial of acupuncture to lower blood pressure,” Circulation, vol. 115, no. 24, pp. 3121–3129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Yin, B. Seo, H. J. Park et al., “Acupuncture, a promising adjunctive therapy for essential hypertension: a double-blind, randomized, controlled trial,” Neurological Research, vol. 29, supplement 1, pp. S98–S103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. A. Macklin, P. M. Wayne, L. A. Kalish et al., “Stop Hypertension with the Acupuncture Research Program (SHARP): results of a randomized, controlled clinical trial,” Hypertension, vol. 48, no. 5, pp. 838–845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. H. Cho, S. C. Chung, J. P. Jones et al., “New findings of the correlation between acupoints and corresponding brain cortices using functional MRI,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2670–2673, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. K. K. S. Hui, J. Liu, O. Marina et al., “The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI,” NeuroImage, vol. 27, no. 3, pp. 479–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Qin, J. Tian, L. J. Bai et al., “FMRI connectivity analysis of acupuncture effects on an amygdale-associated brain network,” Molecular Pain, vol. 4, article 55, 2008. View at Google Scholar
  14. L. Bai, H. Yan, N. Li et al., “Neural specificity of acupuncture stimulation at pericardium 6: evidence from an fMRI study,” Journal of Magnetic Resonance Imaging, vol. 31, no. 1, pp. 71–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Bai, W. Qin, J. Tian et al., “Acupuncture modulates spontaneous activities in the anticorrelated resting brain networks,” Brain Research, vol. 1279, no. C, pp. 37–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Bai, W. Qin, J. Tian, J. Dai, and W. Yang, “Detection of dynamic brain networks modulated by acupuncture using a graph theory model,” Progress in Natural Science, vol. 19, no. 7, pp. 827–835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Bai, J. Tian, C. Zhong et al., “Acupuncture modulates temporal neural responses in wide brain networks: evidence from fMRI study,” Molecular Pain, vol. 6, article 73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Bai, W. Qin, J. Tian et al., “Time-varied characteristics of acupuncture effects in fMRI studies,” Human Brain Mapping, vol. 30, no. 11, pp. 3445–3460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. B. You, L. J. Bai, R. W. Dai et al., “Acupuncture induces divergent alterations of functional connectivity within conventional frequency bands: evidence from MEG recordings,” Plos One, vol. 7, no. 11, Article ID e49250, 2012. View at Google Scholar
  20. J. S. Han, “Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies,” Trends in Neurosciences, vol. 26, no. 1, pp. 17–22, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. G. G. Xing, F. Y. Liu, X. X. Qu et al., “Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain,” Journal of Pharmacology and Experimental Therapeutics, vol. 321, pp. 1046–1053, 2007. View at Google Scholar
  22. X. Y. Shen, Meridians and Acupoints, China Press of Traditional Chinese Medicine, Beijing, China, 2nd edition, 2002.
  23. L. Laux, P. Glanzmann, P. Schaffner et al., Das State-Trait-Angstinventar, Theotetische Grundlagen und Handanweisung, Beltz, Weinheim, Germany, 1981.
  24. B. A. Abele and W. Brehm, “The conceptualization and measurement of mood: the development of the “Mood Survey”,” Diagnostica, vol. 32, pp. 209–228, 1986. View at Google Scholar
  25. J. E. Ware and C. D. Sherbourne, “The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection,” Medical Care, vol. 30, no. 6, pp. 473–483, 1992. View at Google Scholar · View at Scopus
  26. S. Ji, X. Sun, W. Zhang, Q. Gu, and R. He, “Mechanisms underlying blood pressure control of cardiovascular centers,” Journal of Biomedical Engineering, vol. 26, no. 1, pp. 216–220, 2009. View at Google Scholar · View at Scopus
  27. Y. H. Gu, “Mechanisms underlying effects of pressor and depressor areas in limbic forebrain,” Journal of Progress in Physiology, vol. 25, no. 4, pp. 205–211, 1994. View at Google Scholar
  28. Y. Z. Chang and Y. H. Gu, “Functional connections among pressor areas of nucleus hypothalamicus posterior, locus coeruleus and rostral ventrolateral,” Journal of Peking University, vol. 24, no. 1, p. 27, 1992. View at Google Scholar
  29. B. C. Ding and P. Wang, “Role of ventrolateral medullary areas in depressor reflex,” Progress in Physiology, vol. 29, no. 3, pp. 271–274, 1998. View at Google Scholar · View at Scopus
  30. A. Kantzides, N. C. Owens, R. De Matteo, and E. Badoer, “Right atrial stretch activates neurons in autonomic brain regions that project to the rostral ventrolateral medulla in the rat,” Neuroscience, vol. 133, no. 3, pp. 775–786, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. N. Yang and S. Wang, “The functional connection of rat habenular nucleus and lateral hypothalamic area in the regulation of cardiovascular activities,” Acta Physiologica Sinica, vol. 42, no. 1, pp. 82–88, 1990. View at Google Scholar · View at Scopus
  32. P. Li, S. C. Tjen-A-Looi, and J. C. Longhurst, “Excitatory projections from arcuate nucleus to ventrolateral periaqueductal gray in electroacupuncture inhibition of cardiovascular reflexes,” American Journal of Physiology, vol. 290, no. 6, pp. H2535–H2542, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. C. Tjen-A-Looi, P. Li, and J. C. Longhurst, “Midbrain vlPAG inhibits rVLM cardiovascular sympathoexcitatory responses during electroacupuncture,” American Journal of Physiology, vol. 290, no. 6, pp. H2543–H2553, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Li, S. C. Tjen-A-Looi, Z. L. Guo, L. W. Fu, and J. C. Longhurst, “Long-loop pathways in cardiovascular electroacupuncture responses,” Journal of Applied Physiology, vol. 106, no. 2, pp. 620–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Wang, Y. Gu, Y. Lu, L. Li, and L. Tan, “Role of substance P in pressor response of lateral hypothamus-perifornical region to glutamate,” Chinese Journal of Applied Physiology, vol. 13, no. 4, pp. 337–341, 1997. View at Google Scholar · View at Scopus
  36. X. Ding, J. S. Wu, and Y. H. Gu et at, “Mechanisms underlying pressor response of nucleus dorsomedialis hypothalami to glutamate,” Journal of Beijing Medical University, vol. 31, pp. 124–126, 1999. View at Google Scholar
  37. Y. Liang, Y. H. Gu, and Y. C. Lv, “Nucleus paraventricularis and sympathetic nervous system mediate pressor response of nucleus amygdaloideus centralis,” Journal of Beijing Medical University, vol. 27, no. 3, pp. 165–167, 1995. View at Google Scholar
  38. J. S. Wu, Y. H. Gu, L. S. Li et al., “Mechanism underlying pressor response of nucleus ventromedialis is involved in pressor response of central amygdaloid nucleus,” Journal of Beijing Medical University, vol. 31, no. 5, pp. 422–425, 1999. View at Google Scholar
  39. Y. Z. Chang and Y. H. Gu, “Role of brain angiotensin II system in subfornical organ-pressor responses,” Acta Physiologica Sinica, vol. 51, no. 1, pp. 38–44, 1999. View at Google Scholar · View at Scopus
  40. W. K. Xu and Y. H. Gu, “Rostral ventrolateral medulla-sympathetic vasoconstrictor nerve system mediated insular cortex-pressor response,” Acta Physiologica Sinica, vol. 46, no. 6, pp. 591–596, 1994. View at Google Scholar · View at Scopus
  41. Z. X. Qian, W. M. Dai, S. G. Fu et al., “Effects of cerebellar fastigial stimulation on the arterial blood pressure and respiratory activities in rabbits,” Natural Science Journal of Hainan University, vol. 13, no. 1, pp. 60–64, 1995. View at Google Scholar
  42. M. Nakai, C. Iadecola, and D. J. Reis, “Global cerebral vasodilation by stimulation of rat fastigial cerebellar nucleus,” The American Journal of Physiology, vol. 243, no. 2, pp. H226–235, 1982. View at Google Scholar · View at Scopus
  43. R. F. Zhang, L. R. Gao, N. K. Zhang et al., “Effects of fastigial nucleus electro-stimulation on mortality and arterial baroreflex sensitivity in rats after myocardial infarction,” Journal of Shanxi Medical University, vol. 41, no. 7, pp. 588–590, 2010. View at Google Scholar
  44. J. Wang, X. L. Tian, X. Zhang et al., “Effects of fastigial nucleus stimulation on crucial cardiovascular physiological parameters,” Chinese Journal of Applied Physiology, vol. 26, no. 4, pp. 507–509, 2010. View at Google Scholar
  45. M. J. Holmes, L. A. Cotter, H. E. Arendt, S. P. Cass, and B. J. Yates, “Effects of lesions of the caudal cerebellar vermis on cardiovascular regulation in awake cats,” Brain Research, vol. 938, no. 1-2, pp. 62–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Idiaquez, R. Fadic R, and C. J. Mathias, “Transient orthostatic hypertension after partial cerebellar resection,” Clinical Autonomic Research, vol. 21, no. 1, pp. 57–59, 2011. View at Google Scholar
  47. F. Beissner, R. Deichmann, C. Henke et al., “Acupuncture-deep pain with an autonomic dimension?” NeuroImage, vol. 60, pp. 653–660, 2012. View at Google Scholar