Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 809062, 9 pages
http://dx.doi.org/10.1155/2013/809062
Research Article

Blockade of Adrenal Medulla-Derived Epinephrine Potentiates Bee Venom-Induced Antinociception in the Mouse Formalin Test: Involvement of Peripheral β-Adrenoceptors

1Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
2Department of Maxillofacial Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
3Department of Physiology and Brain Research Institute, Chungnam National University Medical School, Daejeon 301-747, Republic of Korea
4Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA

Received 27 March 2013; Accepted 8 August 2013

Academic Editor: Jaung-Geng Lin

Copyright © 2013 Suk-Yun Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. D. Somerfield and S. Brandwein, “Bee venom and adjuvant arthritis,” Journal of Rheumatology, vol. 15, no. 12, p. 1878, 1988. View at Google Scholar · View at Scopus
  2. S. Y. Yoon, D. H. Roh, Y. B. Kwon et al., “Acupoint stimulation with diluted bee venom (apipuncture) potentiates the analgesic effect of intrathecal clonidine in the rodent formalin test and in a neuropathic pain model,” Journal of Pain, vol. 10, no. 3, pp. 253–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Y. Kang, C. Y. Kim, D. H. Roh et al., “Chemical stimulation of the ST36 acupoint reduces both formalin-induced nociceptive behaviors and spinal astrocyte activation via spinal α-2 adrenoceptors,” Brain Research Bulletin, vol. 86, no. 5-6, pp. 412–421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Y. Kang, D. H. Roh, S. Y. Yoon et al., “Repetitive treatment with diluted bee venom reduces neuropathic pain via potentiation of locus coeruleus noradrenergic neuronal activity and modulation of spinal NR1 phosphorylation in rats,” Journal of Pain, vol. 13, no. 2, pp. 155–166, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Y. Kang, D. H. Roh, J. H. Park, H. J. Lee, and J. H. Lee, “Activation of spinal α2-adrenoceptors using diluted bee venom stimulation reduces cold allodynia in neuropathic pain rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 784713, 8 pages, 2012. View at Publisher · View at Google Scholar
  6. Y. B. Kwon, T. W. Ham, H. W. Kim et al., “Water soluble fraction (<10 kDa) from bee venom reduces visceral pain behavior through spinal α2-adrenergic activity in mice,” Pharmacology Biochemistry and Behavior, vol. 80, no. 1, pp. 181–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. B. Kwon, J. D. Lee, H. J. Lee et al., “Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses,” Pain, vol. 90, no. 3, pp. 271–280, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. B. Kwon, H. J. Han, A. J. Beitz, and J. H. Lee, “Bee venom acupoint stimulation increases Fos expression in catecholaminergic neurons in the rat brain,” Molecules and Cells, vol. 17, no. 2, pp. 329–333, 2004. View at Google Scholar · View at Scopus
  9. Y. B. Kwon, S. Y. Yoon, H. W. Kim et al., “Substantial role of locus coeruleus-noradrenergic activation and capsaicin-insensitive primary afferent fibers in bee venom's anti-inflammatory effect,” Neuroscience Research, vol. 55, no. 2, pp. 197–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. B. Kwon, M. S. Kang, H. J. Han, A. J. Beitz, and J. H. Lee, “Visceral antinociception produced by bee venom stimulation of the Zhongwan acupuncture point in mice: role of α2 adrenoceptors,” Neuroscience Letters, vol. 308, no. 2, pp. 133–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. H. Roh, Y. B. Kwon, H. W. Kim et al., “Acupoint stimulation with diluted bee venom (apipuncture) alleviates thermal hyperalgesia in a rodent neuropathic pain model: involvement of spinal α2-adrenoceptors,” Journal of Pain, vol. 5, no. 6, pp. 297–303, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. H. W. Kim, Y. B. Kwon, H. J. Han, I. S. Yang, A. J. Beitz, and J. H. Lee, “Antinociceptive mechanisms associated with diluted bee venom acupuncture (apipuncture) in the rat formalin test: involvement of descending adrenergic and serotonergic pathways,” Pharmacological Research, vol. 51, no. 2, pp. 183–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. B. Kwon, J. H. Kim, J. H. Yoon et al., “The analgesic efficacy of bee venom acupuncture for knee osteoarthritis: a comparative study with needle acupuncture,” The American Journal of Chinese Medicine, vol. 29, no. 2, pp. 187–199, 2001. View at Google Scholar · View at Scopus
  14. Y. B. Kwon, H. J. Lee, H. J. Han et al., “The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats,” Life Sciences, vol. 71, no. 2, pp. 191–204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. B. Kwon, H. W. Kim, T. W. Ham et al., “The anti-inflammatory effect of bee venom stimulation in a mouse air pouch model is mediated by adrenal medullary activity,” Journal of Neuroendocrinology, vol. 15, no. 1, pp. 93–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Y. Yoon, H. W. Kim, D. H. Roh et al., “The anti-inflammatory effect of peripheral bee venom stimulation is mediated by central muscarinic type 2 receptors and activation of sympathetic preganglionic neurons,” Brain Research, vol. 1049, no. 2, pp. 210–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Y. Yoon, Y. B. Kwon, H. W. Kim et al., “Peripheral bee venom's anti-inflammatory effect involves activation of the coeruleospinal pathway and sympathetic preganglionic neurons,” Neuroscience Research, vol. 59, no. 1, pp. 51–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. G. Khasar, G. Mccarter, and J. D. Levine, “Epinephrine produces a β-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors,” Journal of Neurophysiology, vol. 81, no. 3, pp. 1104–1112, 1999. View at Google Scholar · View at Scopus
  19. S. G. Khasar, P. G. Green, F. J. Miao, and J. D. Levine, “Vagal modulation of nociception is mediated by adrenomedullary epinephrine in the rat,” European Journal of Neuroscience, vol. 17, no. 4, pp. 909–915, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. G. Khasar, O. A. Dina, P. G. Green, and J. D. Levine, “Sound stress-induced long-term enhancement of mechanical hyperalgesia in rats is maintained by sympathoadrenal catecholamines,” Journal of Pain, vol. 10, no. 10, pp. 1073–1077, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. P. Kohm and V. M. Sanders, “Suppression of antigen-specific Th2 cell-dependent IgM and IgG1 production following norepinephrine depletion in vivo,” Journal of Immunology, vol. 162, no. 9, pp. 5299–5308, 1999. View at Google Scholar · View at Scopus
  22. D. H. Roh, H. W. Kim, S. Y. Yoon et al., “Bee venom injection significantly reduces nociceptive behavior in the mouse formalin test via capsaicin-insensitive afferents,” Journal of Pain, vol. 7, no. 7, pp. 500–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Y. Yoon, Y. B. Kwon, H. W. Kim et al., “A spinal muscarinic M2 receptor-GABAergic disinhibition pathway that modulates peripheral inflammation in mice,” Neuropharmacology, vol. 53, no. 5, pp. 677–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. E. Mahani, F. Motamedi, and A. Ahmadiani, “Involvement of hypothalamic pituitary adrenal axis on the nifedipine-induced antinociception and tolerance in rats,” Pharmacology Biochemistry and Behavior, vol. 85, no. 2, pp. 422–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Miyamoto, M. Ozaki, and H. Yamamoto, “Effect of adrenalectomy on correlation of analgesia with tissue content of morphine,” European Journal of Pharmacology, vol. 167, no. 1, pp. 11–20, 1989. View at Google Scholar · View at Scopus
  26. S. G. Khasar, F. J. Miao, W. Jänig, and J. D. Levine, “Vagotomy-induced enhancement of mechanical hyperalgesia in the rat is sympathoadrenal-mediated,” Journal of Neuroscience, vol. 18, no. 8, pp. 3043–3049, 1998. View at Google Scholar · View at Scopus
  27. H. Wei, E. Jyväsjärvi, S. Niissalo et al., “The influence of chemical sympathectomy on pain responsivity and α2-adrenergic antinociception in neuropathic animals,” Neuroscience, vol. 114, no. 3, pp. 655–668, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. X. J. Zhou, J. Yang, F. L. Yan et al., “Norepinephrine plays an important role in antinociceptive modulation of hypothalamic paraventricular nucleus in the rat,” International Journal of Neuroscience, vol. 120, no. 6, pp. 428–438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Pertovaara and H. Wei, “Peripheral effects of morphine in neuropathic rats: role of sympathetic postganglionic nerve fibers,” European Journal of Pharmacology, vol. 429, no. 1–3, pp. 139–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. T. C. Tai, R. Claycomb, B. J. Siddall, R. A. Bell, R. Kvetnansky, and D. L. Wong, “Stress-induced changes in epinephrine expression in the adrenal medulla in vivo,” Journal of Neurochemistry, vol. 101, no. 4, pp. 1108–1118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Giordano and L. Rogers, “Putative mechanisms of buspirone-induced antinociception in the rat,” Pain, vol. 50, no. 3, pp. 365–372, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Kaplan, C. A. Robinson, J. F. Scavulli, and J. H. Vaughan, “Propranolol and the treatment of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 23, no. 2, pp. 253–255, 1980. View at Google Scholar · View at Scopus
  33. A. Dogrul, I. Coskun, and T. Uzbay, “The contribution of α-1 and α-2 adrenoceptors in peripheral imidazoline and adrenoceptor agonist-induced nociception,” Anesthesia and Analgesia, vol. 103, no. 2, pp. 471–477, 2006. View at Publisher · View at Google Scholar · View at Scopus