Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 810632, 16 pages
http://dx.doi.org/10.1155/2013/810632
Research Article

Inclusion Complex of Zerumbone with Hydroxypropyl-β-Cyclodextrin Induces Apoptosis in Liver Hepatocellular HepG2 Cells via Caspase 8/BID Cleavage Switch and Modulating Bcl2/Bax Ratio

1UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia (UPM), Serdang, 43400 Selangor, Malaysia
2Department of Chemistry, Faculty of Science, University Putra Malaysia (UPM), Serdang, 43400 Selangor, Malaysia
3Department of Pharmacy, Faculty of Medicine Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Medical Research Center, Faculty of Medicine, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
5College of Pharmacy, Qassim University, P.O. Box 2055, Buraydah 6800, Saudi Arabia
6Department of Microbiology and Pathology, Faculty of Veterinary Medicine, University Putra Malaysia (UPM), Serdang, 43400 Selangor, Malaysia
7Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 10 January 2013; Accepted 3 April 2013

Academic Editor: Gail B. Mahady

Copyright © 2013 Nabilah Muhammad Nadzri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Cragg, D. G. I. Kingston, and D. Newman, Anticancer Agents from Natural Products, Taylor & Francis Group, Boca Raton, Fla, USA, 2005.
  2. G. M. Cragg, D. J. Newman, and K. M. Snader, “Natural products in drug discovery and development,” Journal of Natural Products, vol. 60, no. 1, pp. 52–60, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Pancharoen, U. Prawat, and P. Tuntiwachwuttikul, “Phytochemistry of the zingiberaceae,” Studies in Natural Products Chemistry, vol. 23, pp. 797–865, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. U. K. Ahmad, H. M. Sirat, M. M. Sanagi, and R. M. Smith, “Supercritical fluid extraction and capillary gas chromatography of the rhizomes of Z. Zerumbet,” Journal of Microcolumn Separations, vol. 6, no. 1, pp. 27–32, 1994. View at Publisher · View at Google Scholar
  5. N. I. Bhuiyan, J. U. Chowdhury, and J. Begum, “Chemical investigation of the leaf and rhizome essential oils of Zingiber zerumbet (L.) Smith from Bangladesh,” Bangladesh Journal of Pharmacology, vol. 4, no. 1, pp. 9–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. Tushar, S. Basak, G. C. Sarma, and L. Rangan, “Ethnomedical uses of Zingiberaceous plants of Northeast India,” Journal of Ethnopharmacology, vol. 132, no. 1, pp. 286–296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Kader, F. Nikkon, M. A. Rashid, and T. Yeasmin, “Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn,” Asian Pacific Journal of Tropical Biomedicine, vol. 1, no. 5, pp. 409–412, 2011. View at Publisher · View at Google Scholar
  8. N. J. Yob, S. M. Jofrry, M. M. R. M. M. Affandi, L. K. Teh, M. Z. Salleh, and Z. A. Zakaria, “Zingiber zerumbet (L.) Smith: a review of its ethnomedicinal, chemical, and pharmacological uses,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 543216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Chane-Ming, R. Vera, and J. C. Chalchat, “Chemical composition of the essential oil from rhizomes, leaves and flowers of Zingiber zerumbet Smith from Reunion Island,” Journal of Essential Oil Research, vol. 15, no. 3, pp. 202–205, 2003. View at Google Scholar · View at Scopus
  10. A. Murakami, T. Tanaka, J. Y. Lee et al., “Zerumbone, a sesquiterpene in subtropical ginger, suppresses skin tumor initiation and promotion stages in ICR mice,” International Journal of Cancer, vol. 110, no. 4, pp. 481–490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kim, S. Miyamoto, Y. Yasui, T. Oyama, A. Murakami, and T. Tanaka, “Zerumbone, a tropical ginger sesquiterpene, inhibits colon and lung carcinogenesis in mice,” International Journal of Cancer, vol. 124, no. 2, pp. 264–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. E. Taha, A. B. Abdul, R. Abdullah, T. A. T. Ibrahim, S. I. Abdelwahab, and S. Mohan, “Potential chemoprevention of diethylnitrosamine-initiated and 2-acetylaminofluorene-promoted hepatocarcinogenesis by zerumbone from the rhizomes of the subtropical ginger (Zingiber zerumbet),” Chemico-Biological Interactions, vol. 186, no. 3, pp. 295–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. I. Abdelwahab, A. B. Abdul, S. Mohan et al., “Zerumbone induces apoptosis in T-acute lymphoblastic leukemia cells,” Leukemia Research, vol. 35, no. 2, pp. 268–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. I. Abdelwahab, A. B. Abdul, N. Devi et al., “Regression of cervical intraepithelial neoplasia by zerumbone in female Balb/c mice prenatally exposed to diethylstilboestrol: involvement of mitochondria-regulated apoptosis,” Experimental and Toxicologic Pathology, vol. 62, no. 5, pp. 461–469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. E. M. Eid, A. B. Abdul, F. E. O. Suliman, M. A. Sukari, A. Rasedee, and S. S. Fatah, “Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin,” Carbohydrate Polymers, vol. 83, no. 4, pp. 1707–1714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  17. K. Mascotti, J. McCullough, and S. R. Burger, “HPC viability measurement: trypan blue versus acridine orange and propidium iodide,” Transfusion, vol. 40, no. 6, pp. 693–696, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. S. C. Cheah, D. R. Appleton, S. T. Lee, M. L. Lam, A. H. A. Hadi, and M. R. Mustafa, “Panduratin a inhibits the growth of A549 cells through induction of apoptosis and inhibition of NF-kappaB translocation,” Molecules, vol. 16, no. 3, pp. 2583–2598, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Mohan, S. I. Abdelwahab, B. Kamalidehghan et al., “Involvement of NF-kB and Bcl2/Bax signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A,” Phytomedicine, vol. 19, no. 11, pp. 1007–1015, 2012. View at Publisher · View at Google Scholar
  20. N. M. Isa, A. B. Abdul, S. I. Abdelwahab et al., “Boesenbergin A, a chalcone from Boesenbergia rotunda induces apoptosis via mitochondrial dysregulation and cytochrome c release in A549 cells in vitro: involvement of HSP70 and Bcl2/Bax signalling pathways,” Journal of Functional Foods, vol. 5, no. 1, pp. 87–97, 2013. View at Publisher · View at Google Scholar
  21. F. Firenzuoli and L. Gori, “Herbal medicine today: clinical and research issues,” Evidence-Based Complementary and Alternative Medicine, vol. 4, supplement 1, pp. 37–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. H. Wyllie, J. F. R. Kerr, and A. R. Currie, “Cell death: the significance of apoptosis,” International Review of Cytology, vol. 68, pp. 251–306, 1980. View at Google Scholar · View at Scopus
  23. S. Yasuhara, Y. Zhu, T. Matsui et al., “Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis,” Journal of Histochemistry and Cytochemistry, vol. 51, no. 7, pp. 873–885, 2003. View at Google Scholar · View at Scopus
  24. S. S. S. Alwi, M. Nallappan, and A. H. L. Pihie, “Zerumbone exerts antiproliferative activity via apoptosis on HepG2 cells,” Malaysian Journal of Biochemistry and Molecular Biology, vol. 15, pp. 19–23, 2007. View at Google Scholar
  25. Y. Shounan, X. Feng, and P. J. O'Connell, “Apoptosis detection by annexin V binding: a novel method for the quantitation of cell-mediated cytotoxicity,” Journal of Immunological Methods, vol. 217, no. 1-2, pp. 61–70, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Vermes, C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger, “A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V,” Journal of Immunological Methods, vol. 184, no. 1, pp. 39–51, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Martin, C. P. M. Reutelingsperger, A. J. McGahon et al., “Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl,” Journal of Experimental Medicine, vol. 182, no. 5, pp. 1545–1556, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Haldar, A. Basu, and C. M. Croce, “Bcl2 is the guardian of microtubule integrity,” Cancer Research, vol. 57, no. 2, pp. 229–233, 1997. View at Google Scholar · View at Scopus
  29. S. I. Abdelwahab, A. B. Abdul, Z. N. M. Zain, and A. H. A. Hadi, “Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells,” International Immunology, vol. 12, no. 4, pp. 594–602, 2012. View at Publisher · View at Google Scholar
  30. M. Xian, K. Ito, T. Nakazato et al., “Zerumbone, a bioactive sesquiterpene, induces G2/M cell cycle arrest and apoptosis in leukemia cells via a Fas- and mitochondria-mediated pathway,” Cancer Science, vol. 98, no. 1, pp. 118–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Kirana, G. H. McIntosh, I. R. Record, and G. P. Jones, “Antitumor activity of extract of Zingiber aromaticum and its bioactive sesquiterpenoid zerumbone,” Nutrition and Cancer, vol. 45, no. 2, pp. 218–225, 2003. View at Google Scholar · View at Scopus
  32. J. Nelson, E. Gibbons, K. R. Pickett et al., “Relationship between membrane permeability and specificity of human secretory phospholipase A2 isoforms during cell death,” Biochimica et Biophysica Acta, vol. 1808, no. 7, pp. 1913–1920, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. V. P. Skulachev, “Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell,” FEBS Letters, vol. 397, no. 1, pp. 7–10, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. J. P. Piret, T. Arnould, B. Fuks, P. Chatelain, J. Remacle, and C. Michiels, “Mitochondria permeability transition-dependent tert-butyl hydroperoxide-induced apoptosis in hepatoma HepG2 cells,” Biochemical Pharmacology, vol. 67, no. 4, pp. 611–620, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. I. R. Indran, G. Tufo, S. Pervaiz, and C. Brenner, “Recent advances in apoptosis, mitochondria and drug resistance in cancer cells,” Biochimica et Biophysica Acta, vol. 1807, no. 6, pp. 735–745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. A. Sharifah Sakinah, S. Tri Handayani, and L. P. Azimahtol Hawariah, “Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/ Bcl-2 ratio,” Cancer Cell International, vol. 7, article 4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. M. Kluck, E. Bossy-Wetzel, D. R. Green, and D. D. Newmeyer, “The release of cytochrome c from mitochondria: a primary site for Bcl- 2 regulation of apoptosis,” Science, vol. 275, no. 5303, pp. 1132–1136, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri, G. Litwack, and E. S. Alnemri, “Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14486–14491, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Wesselborg, I. H. Engels, E. Rossmann, M. Los, and K. Schulze-Osthoff, “Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction,” Blood, vol. 93, no. 9, pp. 3053–3063, 1999. View at Google Scholar · View at Scopus
  40. A. Gonçalves, D. Braguer, G. Carles, N. André, C. Prevôt, and C. Briand, “Caspase-8 activation independent of CD95/CD95-L interaction during paclitaxel-induced apoptosis in human colon cancer cells (HT29-D4),” Biochemical Pharmacology, vol. 60, no. 11, pp. 1579–1584, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. M. C. Wei, T. Lindsten, V. K. Mootha et al., “tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c,” Genes and Development, vol. 14, no. 16, pp. 2060–2071, 2000. View at Google Scholar · View at Scopus
  42. H. Li, H. Zhu, C. J. Xu, and J. Yuan, “Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis,” Cell, vol. 94, no. 4, pp. 491–501, 1998. View at Google Scholar · View at Scopus
  43. S. J. Korsmeyer, M. C. Wei, M. Saito, S. Weiler, K. J. Oh, and P. H. Schlesinger, “Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c,” Cell Death and Differentiation, vol. 7, no. 12, pp. 1166–1173, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Strobel, L. Swanson, S. Korsmeyer, and S. A. Cannistra, “BAX enhances paclitaxel-induced apoptosis through a p53-independent pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 14094–14099, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. G. J. Zhang, I. Kimijima, M. Onda et al., “Tamoxifen-induced apoptosis in breast cancer cells relates to down- regulation of bcl-2, but not bax and bcl-X(L), without alteration of p53 protein levels,” Clinical Cancer Research, vol. 5, no. 10, pp. 2971–2977, 1999. View at Google Scholar · View at Scopus
  46. M. Vayssade, L. Faridoni-Laurens, J. Bénard, and J. C. Ahomadegbe, “Expression of p53-family members and associated target molecules in breast cancer cell lines in response to vincristine treatment,” Biochemical Pharmacology, vol. 63, no. 9, pp. 1609–1617, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. M. B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein, and R. W. Craig, “Participation of p53 protein in the cellular response to DNA damage,” Cancer Research, vol. 51, no. 23, pp. 6304–6311, 1991. View at Google Scholar · View at Scopus
  48. H. M. Beere, B. B. Wolf, K. Cain et al., “Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome,” Nature Cell Biology, vol. 2, no. 8, pp. 469–475, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Jolly and R. I. Morimoto, “Role of the heat shock response and molecular chaperones in oncogenesis and cell death,” Journal of the National Cancer Institute, vol. 92, no. 19, pp. 1564–1572, 2000. View at Google Scholar · View at Scopus
  50. L. Galluzzi, F. Giordanetto, and G. Kroemer, “Targeting HSP70 for cancer therapy,” Molecular Cell, vol. 36, no. 2, pp. 176–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Rohde, M. Daugaard, M. H. Jensen, K. Helin, J. Nylandsted, and M. Jäättelä, “Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms,” Genes and Development, vol. 19, no. 5, pp. 570–582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Suzuki, Y. Imai, H. Nakayama, K. Takahashi, K. Takio, and R. Takahashi, “A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death,” Molecular Cell, vol. 8, no. 3, pp. 613–621, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. M. MacFarlane, W. Merrison, S. B. Bratton, and G. M. Cohen, “Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro,” The Journal of Biological Chemistry, vol. 277, no. 39, pp. 36611–36616, 2002. View at Publisher · View at Google Scholar · View at Scopus