Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 917609, 7 pages
http://dx.doi.org/10.1155/2013/917609
Research Article

Simultaneous Determination of Crypto-Chlorogenic Acid, Isoquercetin, and Astragalin Contents in Moringa oleifera Leaf Extracts by TLC-Densitometric Method

Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road, Ratchathevi, Bangkok 10400, Thailand

Received 24 December 2012; Accepted 27 January 2013

Academic Editor: Molvibha Vongsakul

Copyright © 2013 Boonyadist Vongsak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Anwar, S. Latif, M. Ashraf, and A. H. Gilani, “Moringa oleifera: a food plant with multiple medicinal uses,” Phytotherapy Research, vol. 21, no. 1, pp. 17–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Pandey, K. Pradheep, R. Gupta, E. R. Nayar, and D. C. Bhandari, “'Drumstick tree' (Moringa oleifera Lam.): a multipurpose potential species in India,” Genetic Resources and Crop Evolution, vol. 58, no. 3, pp. 453–460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Ouédraogo, A. Lamien-Sanou, N. Ramdé et al., “Protective effect of Moringa oleifera leaves against gentamicin-induced nephrotoxicity in rabbits,” Experimental and Toxicologic Pathology, vol. 65, no. 3, pp. 335–339, 2013. View at Publisher · View at Google Scholar
  4. B. N. Singh, B. R. Singh, R. L. Singh et al., “Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1109–1116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Ndong, M. Uehara, S. I. Katsumata, and K. Suzuki, “Effects of oral administration of Moringa oleifera Lam on glucose tolerance in Goto-Kakizaki and wistar rats,” Journal of Clinical Biochemistry and Nutrition, vol. 40, no. 3, pp. 229–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. R. Verma, M. Vijayakumar, C. S. Mathela, and C. V. Rao, “In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves,” Food and Chemical Toxicology, vol. 47, no. 9, pp. 2196–2201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Chumark, P. Khunawat, Y. Sanvarinda et al., “The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves,” Journal of Ethnopharmacology, vol. 116, no. 3, pp. 439–446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Vongsak, P. Sithisarn, and W. Gritsanapan, “HPLC quantitative analysis of three major antioxidative components of Moringa oleifera leaf extracts,” Planta Medica, vol. 78, no. 11, p. 1252, 2012. View at Google Scholar
  9. S. H. Jung, B. J. Kim, E. H. Lee, and N. N. Osborne, “Isoquercitrin is the most effective antioxidant in the plant Thuja orientalis and able to counteract oxidative-induced damage to a transformed cell line (RGC-5 cells),” Neurochemistry International, vol. 57, no. 7, pp. 713–721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Fernandez, R. Reyes, H. Ponce et al., “Isoquercitrin from Argemone platyceras inhibits carbachol and leukotriene D4-induced contraction in guinea-pig airways,” European Journal of Pharmacology, vol. 522, no. 1–3, pp. 108–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Gasparotto Jr., F. M. Gasparotto, E. L. B. Lourenço et al., “Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: evidence for the inhibition of angiotensin converting enzyme,” Journal of Ethnopharmacology, vol. 134, no. 2, pp. 363–372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. N. Park, S. Y. Kim, G. N. Lim, N. R. Jo, and M. H. Lee, “In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts,” Journal of Industrial and Engineering Chemistry, vol. 18, no. 2, pp. 680–683, 2012. View at Publisher · View at Google Scholar
  13. L. W. Soromou, N. Chen, L. Jiang et al., “Astragalin attenuates lipopolysaccharide-induced inflammatory responses by down-regulating NF-κB signaling pathway,” Biochemical and Biophysical Research Communications, vol. 419, no. 2, pp. 256–261, 2012. View at Publisher · View at Google Scholar
  14. M. Kotani, M. Matsumoto, A. Fujita et al., “Persimmon leaf extract and astragalin inhibit development of dermatitis and IgE elevation in NC/NGa mice,” Journal of Allergy and Clinical Immunology, vol. 106, no. 1 I, pp. 159–166, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Nakatani, S. I. Kayano, H. Kikuzaki, K. Sumino, K. Katagiri, and T. Mitani, “Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.),” Journal of Agricultural and Food Chemistry, vol. 48, no. 11, pp. 5512–5516, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. A. S. Cho, S. M. Jeon, M. J. Kim et al., “Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice,” Food and Chemical Toxicology, vol. 48, no. 3, pp. 937–943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. V. Rodriguez de Sotillo and M. Hadley, “Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats,” The Journal of Nutritional Biochemistry, vol. 13, no. 12, pp. 717–726, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Zhang, H. Huang, T. Yang et al., “Chlorogenic acid protects mice against lipopolysaccharide-induced acute lung injury,” Injury, vol. 41, no. 7, pp. 746–752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. N. Bennett, F. A. Mellon, N. Foidl et al., “Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L.,” Journal of Agricultural and Food Chemistry, vol. 51, no. 12, pp. 3546–3553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Bodoki, R. Oprean, L. Vlase, M. Tamas, and R. Sandulescu, “Fast determination of colchicine by TLC-densitometry from pharmaceuticals and vegetal extracts,” Journal of Pharmaceutical and Biomedical Analysis, vol. 37, no. 5, pp. 971–977, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Cimpoiu, A. Hosu, L. Seserman, M. Sandru, and V. Miclaus, “Simultaneous determination of methylxanthines in different types of tea by a newly developed and validated TLC method,” Journal of Separation Science, vol. 33, no. 23-24, pp. 3794–3799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Vongsak, P. Sithisarn, S. Mangmool, S. Thongpraditchote, Y. Wongkrajang, and W. Gritsanapan, “Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method,” Industrial Crops and Products, vol. 44, pp. 566–571, 2013. View at Publisher · View at Google Scholar
  23. ICH, ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Test and Methodology, ICH, Geneva, Switzerland, 1996/2005, http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf.
  24. S. Iqbal and M. I. Bhanger, “Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan,” Journal of Food Composition and Analysis, vol. 19, no. 6-7, pp. 544–551, 2006. View at Publisher · View at Google Scholar · View at Scopus