Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 921012, 8 pages
http://dx.doi.org/10.1155/2013/921012
Research Article

Citrus junos Tanaka Peel Extract Exerts Antidiabetic Effects via AMPK and PPAR- both In Vitro and In Vivo in Mice Fed a High-Fat Diet

1Korea Food Research Institute, 1201 Anyangpangyoro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea
2Department of Food Science & Technology, Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongnam 660-701, Republic of Korea

Received 23 January 2013; Accepted 7 April 2013

Academic Editor: Per Bendix Jeppesen

Copyright © 2013 Sung Hee Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Derosa and P. Maffioli, “Effects of thiazolidinediones and sulfonylureas in patients with diabetes,” Diabetes Technology & Therapeutics, vol. 12, no. 6, pp. 491–501, 2010. View at Google Scholar · View at Scopus
  2. Q. Liu, L. Chen, L. Hu, Y. Guo, and X. Shen, “Small molecules from natural sources, targeting signaling pathways in diabetes,” Biochimica et Biophysica Acta—Gene Regulatory Mechanisms, vol. 1799, no. 10–12, pp. 854–865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Hirai, N. Takahashi, T. Goto et al., “Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies,” Mediators of Inflammation, vol. 2010, Article ID 367838, 8 pages, 2010. View at Publisher · View at Google Scholar
  4. K. Zygmunt, B. Faubert, J. MacNeil, and E. Tsiani, “Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK,” Biochemical and Biophysical Research Communications, vol. 398, no. 2, pp. 178–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Baur, “Biochemical effects of SIRT1 activators,” Biochimica et Biophysica Acta—Proteins and Proteomics, vol. 1804, no. 8, pp. 1626–1634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Takano and I. Komuro, “Peroxisome proliferator-activated receptor γ and cardiovascular diseases,” Circulation Journal, vol. 73, no. 2, pp. 214–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Levy, “Review of studies on the effect of bile acid sequestrants in patients with type 2 diabetes mellitus,” Metabolic Syndrome and Related Disorders, vol. 8, supplement 1, pp. S9–S13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Shehzad, T. Ha, F. Subhan, and Y. S. Lee, “New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases,” European Journal of Nutrition, vol. 50, no. 3, pp. 151–161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. C. Shih, C. H. Lin, and J. B. Wu, “Eriobotrya japonica improves hyperlipidemia and reverses insulin resistance in high-fat-fed mice,” Phytotherapy Research, vol. 24, no. 12, pp. 1769–1780, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Duvnjak and M. Duvnjak, “The metabolic syndrome—an ongoing story,” Journal of Physiology and Pharmacology, vol. 60, pp. 19–24, 2009. View at Google Scholar · View at Scopus
  11. C. Espinola-Klein, T. Gori, S. Blankenberg, and T. Munzel, “Inflammatory markers and cardiovascular risk in the metabolic syndrome,” Frontiers in Bioscience, vol. 16, no. 5, pp. 1663–1674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Bhalla, A. Kalogeropoulos, V. Georgiopoulou, and J. Butler, “Serum resistin: physiology, pathophysiology and implications for heart failure,” Biomarkers in Medicine, vol. 4, no. 3, pp. 445–452, 2010. View at Publisher · View at Google Scholar
  13. K. M. Yoo, K. W. Lee, J. B. Park, H. J. Lee, and I. K. Hwang, “Variation in major antioxidants and total antioxidant activity of yuzu (Citrus junus Sieb ex Tanaka) during maturation and between cultivars,” Journal of Agricultural and Food Chemistry, vol. 52, no. 19, pp. 5907–5913, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Hirota, N. N. Roger, H. Nakamura, H. S. Song, M. Sawamura, and N. Suganuma, “Anti-inflammatory effects of limonene from yuzu (citrus junos Tanaka) essential oil on eosinophils,” Journal of Food Science, vol. 75, no. 3, pp. H87–H92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. R. Matthews, J. P. Hosker, A. S. Rudenski et al., “Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  16. J. S. Noh, H. Y. Kim, C. H. Park, H. Fujii, and T. Yokozawa, “Hypolipidaemic and antioxidative effects of oligonol, a low-molecular-weight polyphenol derived from lychee fruit, on renal damage in type 2 diabetic mice,” British Journal of Nutrition, vol. 104, no. 8, pp. 1120–1128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Kılıçgün and D. Altıner, “Correlation between antioxidant effect mechanisms and polyphenol content of Rosa canina,” Pharmacognosy Magazine, vol. 6, no. 23, pp. 238–241, 2010. View at Publisher · View at Google Scholar
  18. A. García-Lafuente, E. Guillamón, A. Villares, M. A. Rostagno, and J. A. Martínez, “Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease,” Inflammation Research, vol. 58, no. 9, pp. 537–552, 2009. View at Publisher · View at Google Scholar
  19. P. S. Mainzen and N. Kamalakkannan, “Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes,” Journal of Biochemical and Molecular Toxicology, vol. 20, no. 2, pp. 96–102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. L. Hsu, C. H. Wu, S. L. Huang, and G. C. Yen, “Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat Diet in rats,” Journal of Agricultural and Food Chemistry, vol. 57, no. 2, pp. 425–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. O. M. Ahmed, A. A. Moneim, I. A. Yazid, and A. M. Mahmoud, “Antihyperglycemic, antihyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens infusion and rutin in nicotinamide-streptozotocin-induced diabetic rats,” Diabetologia Croatica, vol. 39, no. 1, pp. 15–35, 2010. View at Google Scholar · View at Scopus
  22. J. H. Kim, M. J. Kang, H. N. Choi, S. M. Jeong, Y. M. Lee, and J. I. Kim, “Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus,” Nutrition Research and Practice, vol. 5, no. 2, pp. 107–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. K. Sharma, S. Bharti, S. Ojha et al., “Up-regulation of PPARγ heat shock protein-27 and -72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes,” British Journal of Nutrition, vol. 106, no. 11, pp. 1–11, 2011. View at Publisher · View at Google Scholar
  24. U. J. Jung, M. K. Lee, K. S. Jeong, and M. S. Choi, “The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice,” Journal of Nutrition, vol. 134, no. 10, pp. 2499–2503, 2004. View at Google Scholar · View at Scopus
  25. R. G. Beniston and M. S. Campo, “Quercetin elevates p27Kip1 and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1,” Oncogene, vol. 22, no. 35, pp. 5504–5514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. S. Kim, H. J. Hur, D. Y. Kwon, and J. T. Hwang, “Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice,” Molecular and Cellular Endocrinology, vol. 358, no. 1, pp. 127–134, 2012. View at Publisher · View at Google Scholar
  27. S. E. Schwartz and G. D. Levine, “Effects of dietary fiber on intestinal glucose absorption and glucose tolerance in rats,” Gastroenterology, vol. 79, no. 5, pp. 833–836, 1980. View at Google Scholar · View at Scopus
  28. K. M. Yoo, I. K. Hwang, J. H. Park, and B. K. Moon, “Major phytochemical composition of 3 native korean citrus varieties and bioactive activity on V79-4 cells induced by oxidative stress,” Journal of Food Science, vol. 74, no. 6, pp. C462–C466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Rahimi, S. Nikfar, B. Larijani, and M. Abdollahi, “A review on the role of antioxidants in the management of diabetes and its complications,” Biomedicine and Pharmacotherapy, vol. 59, no. 7, pp. 365–373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. T. Jeong and C. H. Song, “Antidiabetic activities of extract from Malva verticillata seed via the activation of AMP-activated protein kinase,” Journal of Microbiology and Biotechnology, vol. 21, no. 9, pp. 921–929, 2011. View at Publisher · View at Google Scholar
  31. S. H. Liu, Y. H. Chang, and M. T. Chiang, “Chitosan reduces gluconeogenesis and increases glucose uptake in skeletal muscle in streptozotocin-induced diabetic rats,” Journal of Agricultural and Food Chemistry, vol. 58, no. 9, pp. 5795–5800, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. E. B. Ferreira, F. de Assis Rocha Neves, M. A. Duarte da Costa, W. Alves do Prado, L. de Araújo Funari Ferri, and R. B. Bazotte, “Comparative effects of Stevia rebaudiana leaves and stevioside on glycaemia and hepatic gluconeogenesis,” Planta Medica, vol. 72, no. 8, pp. 691–696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Rasouli, A. Yao-Borengasser, L. M. Miles, S. C. Elbein, and P. A. Kern, “Increased plasma adiponectin in response to pioglitazone does not result from increased gene expression,” American Journal of Physiology—Endocrinology and Metabolism, vol. 290, no. 1, pp. E42–E46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Grisouard, K. Dembinski, D. Mayer, U. Keller, B. Muller, and M. Christ-Crain, “Targeting AMP-activated protein kinase in adipocytes to modulate obesity-related adipokine production associated with insulin resistance and breast cancer cell proliferation,” Diabetology & Metabolic Syndrome, vol. 3, no. 16, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus