Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 925342, 7 pages
http://dx.doi.org/10.1155/2013/925342
Review Article

A Review on Bioactivities of Perilla: Progress in Research on the Functions of Perilla as Medicine and Food

Center for Environment, Health and Field Sciences, Chiba University, Kashiwanoha 6-2-1, Kashiwa, Chiba 277-0882, Japan

Received 12 April 2013; Accepted 24 September 2013

Academic Editor: Wagner Vilegas

Copyright © 2013 Miho Igarashi and Yoshifumi Miyazaki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Takahashi, Handbook of Modern Chinese Medicine II, Yakkyoku Shimbun, Tokyo, Japan, 1969, [Japanese].
  2. “Notification of the medical devices investigation office, evaluation and licensing division,” in Ministry of Health LaWoJ, 2012.
  3. A. Hisanaga, T. Itoh, Y. Hasegawa et al., “A case of sleep choking syndrome improved by the Kampo extract of Hange-koboku-to,” Psychiatry and Clinical Neurosciences, vol. 56, no. 3, pp. 325–327, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Iwasaki, Q. Wang, H. Seki et al., “The effects of the traditional Chinese medicine, “Banxia Houpo Tang (Hange-Koboku To)” on the swallowing reflex in Parkinson's disease,” Phytomedicine, vol. 7, no. 4, pp. 259–263, 2000. View at Google Scholar · View at Scopus
  5. K. Iwasaki, Q. Wang, T. Nakagawa, T. Suzuki, and H. Sasaki, “The Traditional Chinese Medicine Banxia Houpo Tang improves swallowing reflex,” Phytomedicine, vol. 6, no. 2, pp. 103–106, 1999. View at Google Scholar · View at Scopus
  6. N. Mantani, A. Hisanaga, T. Kogure, T. Kita, Y. Shimada, and K. Terasawa, “Four cases of panic disorder successfully treated with Kampo (Japanese herbal) medicines: kami-shoyo-san and Hange-koboku-to,” Psychiatry and Clinical Neurosciences, vol. 56, no. 6, pp. 617–620, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Luo, J. Nong Wang, L. D. Kong, Q. G. Jiang, and R. X. Tan, “Antidepressant effects of Banxia Houpu decoction, a traditional Chinese medicinal empirical formula,” Journal of Ethnopharmacology, vol. 73, no. 1-2, pp. 277–281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Ito, T. Nagai, T. Yabe, S. Nunome, T. Hanawa, and H. Yamada, “Antidepressant-like activity of a Kampo (Japanese herbal) medicine, Koso-san (Xiang-Su-San), and its mode of action via the hypothalamic-pituitary-adrenal axis,” Phytomedicine, vol. 13, no. 9-10, pp. 658–667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Q.-Q. Mao, Z. Huang, X.-M. Zhong et al., “Effects of SYJN, a Chinese herbal formula, on chronic unpredictable stress-induced changes in behavior and brain BDNF in rats,” Journal of Ethnopharmacology, vol. 128, no. 2, pp. 336–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Kitagawa, J. Kinjyo, H. Kuwasima et al., Pharmacognosy, Hirokawa, Tokyo, Japan, 7th edition, 2011.
  11. T. Makino, New Makino Japan Plant, Diagram Model Hokuryukan, Tokyo, Japan, 2008.
  12. A. Kaneko, S. Cho, K. Hirai et al., “Hange-koboku-to, a kampo medicine, modulates cerebral levels of 5-HT (5-hydroxytryptamine), NA (noradrenaline) and DA (dopamine) in mice,” Phytotherapy Research, vol. 19, no. 6, pp. 491–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J.-M. Li, L.-D. Kong, Y.-M. Wang, C. H. K. Cheng, W.-Y. Zhang, and W.-Z. Tan, “Behavioral and biochemical studies on chronic mild stress models in rats treated with a Chinese traditional prescription Banxia-houpu decoction,” Life Sciences, vol. 74, no. 1, pp. 55–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Naito, H. Itoh, and M. Takeyama, “Effects of Hange-koboku-to (Banxia-houpo-tang) on neuropeptide levels in human plasma and saliva,” Biological and Pharmaceutical Bulletin, vol. 26, no. 11, pp. 1609–1613, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Naito, H. Itoh, and M. Takeyama, “Some gastrointestinal function regulatory Kampo medicines have modulatory effects on human plasma adrenocorticotropic hormone and cortisol levels with continual stress exposure,” Biological and Pharmaceutical Bulletin, vol. 26, no. 1, pp. 101–104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Q.-Q. Mao, X.-M. Zhong, Z.-Y. Li, C.-R. Feng, A.-J. Pan, and Z. Huang, “Herbal formula SYJN increases neurotrophin-3 and nerve growth factor expression in brain regions of rats exposed to chronic unpredictable stress,” Journal of Ethnopharmacology, vol. 131, no. 1, pp. 182–186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Makino, T. Ono, K. Matsuyama et al., “Suppressive effects of Perilla frutescents on IgA nephropathy in HIGA mice,” Nephrology Dialysis Transplantation, vol. 18, no. 3, pp. 484–490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Maniko, T. Nakamura, T. Ono, E. Muso, and G. Honda, “Suppressive effects of Perilla frutescens on Mesangioproliferative glomerulonephritis in rats,” Biological and Pharmaceutical Bulletin, vol. 24, no. 2, pp. 172–175, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Makino, M. Ito, F. Kiuchiu, T. Ono, E. Muso, and G. Honda, “Inhibitory effect of decoction of Perilla frutescens on cultured murine mesangial cell proliferation and quantitative analysis of its active constituents,” Planta Medica, vol. 67, no. 1, pp. 24–28, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Makino, Y. Furuta, H. Fujii et al., “Effect of oral treatment of Perilla frutescens and its constituents on type-I allergy in mice,” Biological and Pharmaceutical Bulletin, vol. 24, no. 10, pp. 1206–1209, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Makino, T. Ono, E. Muso, and G. Honda, “Effect of Perilla frutescens on nitric oxide production and DNA synthesis in cultured murine vascular smooth muscle cells,” Phytotherapy Research, vol. 16, no. 1, pp. S19–S23, 2002. View at Google Scholar · View at Scopus
  22. C.-S. Lin, C.-L. Kuo, J.-P. Wang, J.-S. Cheng, Z.-W. Huang, and C.-F. Chen, “Growth inhibitory and apoptosis inducing effect of Perilla frutescens extract on human hepatoma HepG2 cells,” Journal of Ethnopharmacology, vol. 112, no. 3, pp. 557–567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. W. J. E. Bemelmans, F. A. J. Muskiet, E. J. M. Feskens et al., “Associations of alpha-linolenic acid and linoleic acid with risk factors for coronary heart disease,” European Journal of Clinical Nutrition, vol. 54, no. 12, pp. 865–871, 2000. View at Google Scholar · View at Scopus
  24. Y. Kim, S.-K. Ji, and H. Choi, “Modulation of liver microsomal monooxygenase system by dietary n-6/n-3 ratios in rat hepatocarcinogenesis,” Nutrition and Cancer, vol. 37, no. 1, pp. 65–72, 2000. View at Google Scholar · View at Scopus
  25. H.-K. Kim, S. Choi, and H. Choi, “Suppression of hepatic fatty acid synthase by feeding α-linolenic acid rich Perilla oil lowers plasma triacylglycerol level in rats,” Journal of Nutritional Biochemistry, vol. 15, no. 8, pp. 485–492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Kim, S. Choi, H.-J. Lee, J.-H. Lee, and H. Choi, “Suppression of fatty acid synthase by dietary polyunsaturated fatty acids is mediated by fat itself, not by peroxidative mechanism,” Journal of Biochemistry and Molecular Biology, vol. 36, no. 3, pp. 258–264, 2003. View at Google Scholar · View at Scopus
  27. Y. Takahashi and T. Ide, “Dietary n-3 fatty acids affect mRNA level of brown adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose transporter 4 in the rat,” British Journal of Nutrition, vol. 84, no. 2, pp. 175–184, 2000. View at Google Scholar · View at Scopus
  28. T. Ide, M. Murata, and M. Sugano, “Stimulation of the activities of hepatic fatty acid oxidation enzymes by dietary fat rich in α-linolenic acid in rats,” Journal of Lipid Research, vol. 37, no. 3, pp. 448–463, 1996. View at Google Scholar · View at Scopus
  29. T. Ide, H. Kobayashi, L. Ashakumary et al., “Comparative effects of Perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver,” Biochimica et Biophysica Acta, vol. 1485, no. 1, pp. 23–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Umezawa, A. Ohta, H. Tojo, H. Yagi, M. Hosokawa, and T. Takeda, “Dietary α-linolenate/linoleate balance influences learning and memory in the senescence-accelerated mouse (SAM),” Brain Research, vol. 669, no. 2, pp. 225–233, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Umezawa, T. Takeda, K. Kogishi et al., “Serum lipid concentrations and mean life span are modulated by dietary polyunsaturated fatty acids in the senescence-accelerated mouse,” Journal of Nutrition, vol. 130, no. 2, pp. 221–227, 2000. View at Google Scholar · View at Scopus
  32. K. Hamazaki, M. Itomura, T. Hamazaki, and S. Sawazaki, “Effects of cooking plant oils on recurrent aphthous stomatitis: a randomized, placebo-controlled, double-blind trial,” Nutrition, vol. 22, no. 5, pp. 534–538, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Ito, T. Nagai, T. Oikawa, H. Yamada, and T. Hanawa, “Antidepressant-like effect of l-Perillaldehyde in stress-induced depression-like model mice through regulation of the olfactory nervous system,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 512697, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Takagi, H. Goto, Y. Shimada et al., “Vasodilative effect of Perillaldehyde on isolated rat aorta,” Phytomedicine, vol. 12, no. 5, pp. 333–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. K.-A. Seo, H. Kim, H.-Y. Ku et al., “The monoterpenoids citral and geraniol are moderate inhibitors of CYP2B6 hydroxylase activity,” Chemico-Biological Interactions, vol. 174, no. 3, pp. 141–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. McGeady, D. L. Wansley, and D. A. Logan, “Carvone and Perillaldehyde interfere with the serum-induced formation of filamentous structures in Candida albicans at substantially lower concentrations than those causing significant inhibition of growth,” Journal of Natural Products, vol. 65, no. 7, pp. 953–955, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Bassoli, G. Borgonovo, S. Caimi et al., “Taste-guided identification of high potency TRPA1 agonists from Perilla frutescens,” Bioorganic and Medicinal Chemistry, vol. 17, no. 4, pp. 1636–1639, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. A. Elegbede, R. Flores, and R. C. Wang, “Perillyl alcohol and Perillaldehyde induced cell cycle arrest and cell death in BroTo and A549 cells cultured in vitro,” Life Sciences, vol. 73, no. 22, pp. 2831–2840, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. P. J. M. Boon, D. Van der Boon, and G. J. Mulder, “Cytotoxicity and biotransformation of the anticancer drug perillyl alcohol in PC12 cells and in the rat,” Toxicology and Applied Pharmacology, vol. 167, no. 1, pp. 55–62, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Masutani, R. Otsuki, Y. Yamaguchi et al., “Fragrant unsaturated aldehydes elicit activation of the keap1/Nrf2 system leading to the upregulation of thioredoxin expression and protection against oxidative stress,” Antioxidants and Redox Signaling, vol. 11, no. 5, pp. 949–962, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Sato, S. Krist, and G. Buchbauer, “Antimicrobial effect of trans-cinnamaldehyde, (-)-Perillaldehyde, (-)-Citronellal, citral, eugenol and carvacrol on airborne microbes using an airwasher,” Biological and Pharmaceutical Bulletin, vol. 29, no. 11, pp. 2292–2294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Y. Wang, S. Y. Wang, and C. Chen, “Increasing antioxidant activity and reducing decay of blueberries by essential oils,” Journal of Agricultural and Food Chemistry, vol. 56, no. 10, pp. 3587–3592, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Jin, X. Wu, F. Xu, X. Wang, J. Wang, and Y. Zheng, “Enhancing antioxidant capacity and reducing decay of Chinese bayberries by essential oils,” Journal of Agricultural and Food Chemistry, vol. 60, no. 14, pp. 3769–3775, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Bardon, V. Foussard, S. Fournel, and A. Loubat, “Monoterpenes inhibit proliferation of human colon cancer cells by modulating cell cycle-related protein expression,” Cancer Letters, vol. 181, no. 2, pp. 187–194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Bardon, K. Picard, and P. Martel, “Monoterpenes inhibit cell growth, cell cycle progression, and cyclin D1 gene expression in human breast cancer cell lines,” Nutrition and Cancer, vol. 32, no. 1, pp. 1–7, 1998. View at Google Scholar · View at Scopus
  46. H. Takano, N. Osakabe, C. Sanbongi et al., “Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans,” Experimental Biology and Medicine, vol. 229, no. 3, pp. 247–254, 2004. View at Google Scholar · View at Scopus
  47. S. Baba, N. Osakabe, M. Natsume et al., “Absorption, metabolism, degradation and urinary excretion of rosmarinic acid after intake of Perilla frutescens extract in humans,” European Journal of Nutrition, vol. 44, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. H.-A. Oh, C.-S. Park, H.-J. Ahn, Y. S. Park, and H.-M. Kim, “Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions,” Experimental Biology and Medicine, vol. 236, no. 1, pp. 99–106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Makino, Y. Furuta, H. Wakushima, H. Fujii, K.-I. Saito, and Y. Kano, “Anti-allergic effect of Perilla frutescens and its active constituents,” Phytotherapy Research, vol. 17, no. 3, pp. 240–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Ito, T. Yabe, Y. Gamo et al., “Rosmarinic acid from Perillae herba produces an antidepressant-like effect in mice through cell proliferation in the hippocampus,” Biological and Pharmaceutical Bulletin, vol. 31, no. 7, pp. 1376–1380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Takeda, M. Tsuji, J. Miyamoto, and T. Matsumiya, “Rosmarinic acid and caffeic acid reduce the defensive freezing behavior of mice exposed to conditioned fear stress,” Psychopharmacology, vol. 164, no. 2, pp. 233–235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Osakabe, A. Yasuda, M. Natsume, and T. Yoshikawa, “Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model,” Carcinogenesis, vol. 25, no. 4, pp. 549–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Osakabe, A. Yasuda, M. Natsume et al., “Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (D-GalN)-sensitized mice,” Free Radical Biology and Medicine, vol. 33, no. 6, pp. 798–806, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Makino, T. Ono, E. Muso, H. Yoshida, G. Honda, and S. Sasayama, “Inhibitory effects of rosmarinic acid on the proliferation of cultured murine mesangial cells,” Nephrology Dialysis Transplantation, vol. 15, no. 8, pp. 1140–1145, 2000. View at Google Scholar · View at Scopus
  55. D.-S. Kim, H.-R. Kim, E.-R. Woo, S.-T. Hong, H.-J. Chae, and S.-W. Chae, “Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase,” Biochemical Pharmacology, vol. 70, no. 7, pp. 1066–1078, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Ren, H. Jiang, R. Li et al., “Rosmarinic acid inhibits 6-OHDA-induced neurotoxicity by anti-oxidation in MES23.5 cells,” Journal of Molecular Neuroscience, vol. 39, no. 1-2, pp. 220–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Ueda, C. Yamazaki, and M. Yamazaki, “Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens,” Biological and Pharmaceutical Bulletin, vol. 25, no. 9, pp. 1197–1202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. W.-C. Ko, C.-M. Shih, I.-J. Leu, T.-T. Chen, and J.-P. Chang, “Mechanisms of relaxant action of luteolin in isolated guinea pig trachea,” Planta Medica, vol. 71, no. 5, pp. 406–411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Takahashi, Y. Sugiyama, K. Kawabata et al., “1,2-Di-O-α-linolenoyl-3-O-β-galactosyl-sn-glycerol as a superoxide generation inhibitor from Perilla frutescens var. crispa,” Bioscience, Biotechnology and Biochemistry, vol. 75, no. 11, pp. 2240–2242, 2011. View at Publisher · View at Google Scholar · View at Scopus