Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 928280, 10 pages
http://dx.doi.org/10.1155/2013/928280
Research Article

Anticancer Activity of Indian Stingless Bee Propolis: An In Vitro Study

Centre for Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, India

Received 11 January 2013; Revised 14 April 2013; Accepted 14 April 2013

Academic Editor: Wojciech Krol

Copyright © 2013 Milind K. Choudhari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Greenaway, T. Scaysbrook, and F. R. Whatlev, “The composition and plant origins of propolis,” Bee Word, vol. 71, pp. 107–118, 1990. View at Google Scholar
  2. E. L. Ghisalberti, “Propolis: a review,” Bee World, vol. 60, pp. 59–84, 1979. View at Google Scholar
  3. M. C. Marcucci, “Propolis: chemical composition, biological properties and therapeutic activity,” Apidologie, vol. 26, pp. 83–99, 1995. View at Google Scholar
  4. A. H. Banskota, Y. Tezuka, and S. Kadota, “Recent progress in pharmacological research of propolis,” Phytotherapy Research, vol. 15, no. 7, pp. 561–571, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. G. A. Burdock, “Review of the biological properties and toxicity of bee propolis (propolis),” Food and Chemical Toxicology, vol. 36, no. 4, pp. 347–363, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Kartal, S. Yildiz, S. Kaya, S. Kurucu, and G. Topcu, “Anti- microbial activity of propolis samples from two different regions of Anatolia,” Journal of Ethnopharmacology, vol. 86, pp. 69–73, 2003. View at Google Scholar
  7. D. Sawichka, H. Car, M. H. Borawska, and J. Niklinski, “The anticancer activity of propolis,” Folia Histochemica et Cytobiologica, vol. 50, no. 1, pp. 25–37, 2012. View at Google Scholar
  8. L. Benguedouar, H. N. Boussenane, W. Kesbsa, M. Alyane, H. Rouibah, and M. Lahouel, “Efficiency of Propolis extract against mitochondrial stress induced by antineoplastic agents (doxorubicin and vinblastin) in rats,” Indian Journal of Experimental Biology, vol. 46, pp. 112–119, 2008. View at Google Scholar
  9. D. F. Birt, S. Hendrich, and W. Wang, “Dietary agents in cancer prevention: flavonoids and isoflavonoids,” Pharmacology and Therapeutics, vol. 90, no. 2-3, pp. 157–177, 2001. View at Google Scholar
  10. C. Chen, M. Weng, C. Wu, and J. Lin, “Comparison of radical scavenging activity, cytotoxic effects and apoptosis induction in human melanoma cells by Taiwanese propolis from different sources,” Evidence-Based Complementary and Alternative Medicine, vol. 1, pp. 175–185, 2004. View at Google Scholar
  11. M. C. Bufalo, J. M. Candeias, and J. M. Sforcin, “In vitro cytotoxic effect of Brazilian green propolis on human laryngeal epidermoid carcinoma (HEP-2) cells,” Evidence-Based Complementary and Alternative Medicine, vol. 22, pp. 1–5, 2007. View at Google Scholar
  12. E. Szliszka, Z. P. Czuba, J. Bronikowska, A. Mertas, A. Paradysz, and W. Krol, “Ethanolic extract of propolis augments TRAIL-induced apoptotic death in prostate cancer cells,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 535172, 11 pages, 2011. View at Publisher · View at Google Scholar
  13. H. Izuta, Y. Narahara, M. Shimazawa, S. Mishima, S. Kondo, and H. Hara, “1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity of bee products and their constituents determined by ESR,” Biological and Pharmaceutical Bulletin, vol. 32, pp. 1947–1951, 2009. View at Google Scholar
  14. A. Russo, V. Cardile, F. Sanchez, N. Troncoso, A. Garbarino, and J. Vanellaand, “Chilean propolis: antioxidant activity and antiproliferative action in humantumor cell lines,” Life Science, vol. 76, pp. 545–558, 2004. View at Google Scholar
  15. V. S. Bankova, S. S. Popov, and N. L. Marekov, “Isopentenyl cinnamates from poplar buds and propolis,” Phytochemistry, vol. 28, pp. 871–873, 1989. View at Google Scholar
  16. M. K. Choudhari, S. A. Punekar, R. V. Ranade, and K. M. Paknikar, “Antimicrobial activity of stingless bee (Trigona sp.) propolis used in the folk medicine of Western Maharashtra, India,” Journal of Ethnopharmacology, vol. 141, pp. 363–367, 2012. View at Google Scholar
  17. E. M. Muli, J. M. Maingi, and J. Macharia, “Antimicrobial properties of propolis and honey from the Kenyan stingless bee. Dactylurina schimidti,” Apiacta, vol. 43, pp. 49–61, 2008. View at Google Scholar
  18. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  19. S. Tolnai, “A method for viable cell count,” Tissue Culture Association Manual, vol. 1, no. 1, pp. 37–38, 1975. View at Publisher · View at Google Scholar · View at Scopus
  20. S. H. Zainal Ariffin, W. H. H. Wan Omar, M. F. Safian, Z. Z. Ariffin, S. Senafi, and R. M. Abdul Wahab, “Intrinsic anticarcinogenic effects of Piper sarmentosum ethanolic extract on a human hepatoma cell line,” Cancer Cell International, vol. 9, article 6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. F. Birt, S. Hendrich, and W. Wang, “Dietary agents in cancer prevention: flavonoids and isoflavonoids,” Pharmacology and Therapeutics, vol. 90, no. 2-3, pp. 157–177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Oktay, B. Emre, and A. Nevzat, “Antioxidative activities of grape (Vitis vinifera) seed extracts obtained from different varieties grown in Turkey,” International Journal of Food Science and Technology, vol. 43, pp. 154–159, 2009. View at Google Scholar
  23. N. Khan, V. M. Adhami, and H. Mukhtar, “Apoptosis by dietary agents for prevention and treatment of cancer,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1333–1339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. L. Khalil, “Biological activity of bee propolis in health and disease,” Asian Pacific Journal of Cancer Prevention, vol. 7, no. 1, pp. 22–31, 2006. View at Google Scholar · View at Scopus
  25. H. S. Vatansever, K. Sorkun, S. I. D. Gurhan et al., “Propolis from Turkey induces apoptosis through activating caspases in human breast carcinoma cell lines,” Acta Histochemica, vol. 112, no. 6, pp. 546–556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Silva, H. Carmo, R. Dinis-Oliveira et al., “In vitro study of P-glycoprotein induction as an antidotal pathway to prevent cytotoxicity in Caco-2 cells,” Archives of Toxicology, vol. 85, no. 4, pp. 315–326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. G. C. Franchi Jr., C. S. Moraes, V. C. Toreti, A. Daugsch, A. E. Nowill, and Y. K. Park, “Comparison of effects of the Ethanolic Extracts of Brazilian Propolis on Human Leukemic cells as assessed with the MTT assay,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 918956, 6 pages, 2012. View at Google Scholar
  28. L. C. Lu, Y. W. Chen, and C. C. Chou, “Antibacterial and DPPH free radical-scavenging activities of the ethanol extract of propolis collected in Taiwan,” Journal of Food and Drug Analysis, vol. 11, no. 4, pp. 277–282, 2003. View at Google Scholar · View at Scopus
  29. T. Nagai, M. Sakai, R. Inoue, H. Inoue, and N. Suzuki, “Antioxidative activities of some commercially honeys, royal jelly, and propolis,” Food Chemistry, vol. 75, no. 2, pp. 237–240, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. A. H. Banskota, T. Nagaoka, L. Y. Sumioka et al., “Antiproliferative activity of the Netherlands propolis and its active principles in cancer cell lines,” Journal of Ethnopharmacology, vol. 80, no. 1, pp. 67–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Stan, L. A. Mărghitaş, and D. Dezmirean, “Quality criteria for propolis standardization,” Animal Science and Biotechnologies, vol. 44, no. 2, pp. 137–140, 2011. View at Google Scholar