Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 938764, 17 pages
http://dx.doi.org/10.1155/2013/938764
Research Article

A Systems-Pharmacology Analysis of Herbal Medicines Used in Health Improvement Treatment: Predicting Potential New Drugs and Targets

1College of Life Science, Northwest University, Xi’an, Shaanxi 710000, China
2Department of Materials Science and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116000, China
3Center of Bioinformatics, College of Life Science, Northwest A & F University, Yang ling, Shaanxi 712100, China
4School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
5Lab of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116000, China

Received 29 April 2013; Revised 23 September 2013; Accepted 4 October 2013

Academic Editor: Y. Ohta

Copyright © 2013 Jianling Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N.-H. Lee and C.-G. Son, “Systematic review of randomized controlled trials evaluating the efficacy and safety of ginseng,” Journal of Acupuncture and Meridian Studies, vol. 4, no. 2, pp. 85–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. G.-C. Huang, L.-S. Wu, L.-G. Chen, L.-L. Yang, and C.-C. Wang, “Immuno-enhancement effects of Huang Qi Liu Yi Tang in a murine model of cyclophosphamide-induced leucopenia,” Journal of Ethnopharmacology, vol. 109, no. 2, pp. 229–235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. L. Burke, C. Legault, M. Anthony et al., “Soy protein and isoflavone effects on vasomotor symptoms in peri- and postmenopausal women: the soy estrogen alternative study,” Menopause, vol. 10, no. 2, pp. 147–153, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. Q.-D. Liang, X.-Q. Lu, Z.-C. Ma et al., “Preliminary study on hematopoietic constituents of si-wu-tang,” Zhongguo Zhong Yao Za Zhi, vol. 29, no. 6, pp. 546–549, 2004. View at Google Scholar · View at Scopus
  5. C. Kim, H. Ha, and J. S. Kim, “Induction of growth hormone by the roots of Astragalus membranaceus in pituitary cell culture,” Archives of Pharmacal Research, vol. 26, no. 1, pp. 34–39, 2003. View at Google Scholar · View at Scopus
  6. E. Yesilada, E. Bedir, I. Çaliş, Y. Takaishi, and Y. Ohmoto, “Effects of triterpene saponins from Astragalus species on in vitro cytokine release,” Journal of Ethnopharmacology, vol. 96, no. 1-2, pp. 71–77, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. X. J. Chen, Z. P. Bian, S. Lu et al., “Cardiac protective effect of Astragalus on viral myocarditis mice: comparison with Perindopril,” The American Journal of Chinese Medicine, vol. 34, no. 3, pp. 493–502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Gu, N. Yin, J. Pei, and L. Lai, “Understanding traditional Chinese medicine anti-inflammatory herbal formulae by simulating their regulatory functions in the human arachidonic acid metabolic network,” Molecular BioSystems, vol. 9, no. 7, pp. 1931–1938, 2013. View at Google Scholar
  9. L. Wu, H. Liu, P. Xue, Z. G. Lu, and K. F. Du, “Influence of a triplex superimposed treatment on HBV replication and mutation during treating chronic hepatitis B,” Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, vol. 15, no. 3, pp. 236–238, 2001. View at Google Scholar · View at Scopus
  10. D.-T. Chu, J. Lepe-Zuniga, W. L. Wong, R. LaPushin, and G. M. Mavligit, “Fractionated extract of Astragalus membranaceus, a Chinese medicinal herb, potentiates LAK cell cytotoxicity generated by a low dose of recombinant Interleukin-2,” Journal of Clinical and Laboratory Immunology, vol. 26, no. 4, pp. 183–187, 1988. View at Google Scholar · View at Scopus
  11. M. Kusum, V. Klinbuayaem, M. Bunjob, and S. Sangkitporn, “Preliminary efficacy and safety of oral suspension SH, combination of five Chinese medicinal herbs, in people living with HIV/AIDS; the phase I/II study,” Journal of the Medical Association of Thailand, vol. 87, no. 9, pp. 1065–1070, 2004. View at Google Scholar · View at Scopus
  12. T. B. Ng, F. Liu, and H. X. Wang, “The antioxidant effects of aqueous and organic extracts of Panax quinquefolium, Panax notoginseng, Codonopsis pilosula, Pseudostellaria heterophylla and Glehnia littoralis,” Journal of Ethnopharmacology, vol. 93, no. 2-3, pp. 285–288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Ma and Z. Z. Guan, “Effect of astragalus injection on left ventricular remodeling and apoptotic gene caspase-3 in rats after myocardial infarction,” Zhongguo Zhong Xi Yi Jie He Za Zhi, vol. 25, no. 7, pp. 646–649, 2005. View at Google Scholar · View at Scopus
  14. T. K. Yim, W. K. Wu, W. F. Pak et al., “Myocardial protection against ischaemia-reperfusion injury by a Polygonum multiflorum extract supplemented “Dang-Gui decoction for enriching blood”, a compound formulation, ex vivo,” Phytotherapy Research, vol. 14, no. 3, pp. 195–199, 2000. View at Google Scholar
  15. J. Ye, H. Duan, X. Yang, W. Yan, and X. Zheng, “Anti-thrombosis effect of paeoniflorin: evaluated in a photochemical reaction thrombosis model in vivo,” Planta Medica, vol. 67, no. 8, pp. 766–767, 2001. View at Google Scholar · View at Scopus
  16. X. Gao, Y. J. Hu, and L. C. Fu, “Blood lipid-regulation of stilbene glycoside from Polygonum multiflorum,” Zhongguo Zhong Yao Za Zhi, vol. 32, no. 4, pp. 323–326, 2007. View at Google Scholar · View at Scopus
  17. J. C.-J. Chao, S.-W. Chiang, C.-C. Wang, Y.-H. Tsai, and M.-S. Wu, “Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells,” World Journal of Gastroenterology, vol. 12, no. 28, pp. 4478–4484, 2006. View at Google Scholar · View at Scopus
  18. G. J.-H. Park, S. P. Mann, and M. C. Ngu, “Acute hepatitis induced by Shou-Wu-Pian, a herbal product derived from Polygonum multiflorum,” Journal of Gastroenterology and Hepatology, vol. 16, no. 1, pp. 115–117, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Verpoorte, Y. H. Choi, and H. K. Kim, “Ethnopharmacology and systems biology: a perfect holistic match,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 53–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Li, X. Xu, J. Wang et al., “A system-level investigation into the mechanisms of Chinese traditional medicine: compound Danshen formula for cardiovascular disease treatment,” PloS ONE, vol. 7, no. 9, Article ID e43918, 2012. View at Google Scholar
  21. W. Tao, X. Xu, X. Wang et al., “Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease,” Journal of Ethnopharmacology, vol. 145, no. 1, pp. 1–10, 2013. View at Google Scholar
  22. B. Li, X. Xu, X. Wang et al., “A systems biology approach to understanding the mechanisms of action of Chinese herbs for treatment of cardiovascular disease,” International Journal of Molecular Sciences, vol. 13, no. 10, pp. 13501–13520, 2012. View at Google Scholar
  23. Y. Sun, R. Zhu, H. Ye et al., “Towards a bioinformatics analysis of anti-Alzheimer’s herbal medicines from a target network perspective,” Briefings in Bioinformatics, vol. 14, no. 3, pp. 327–343, 2013. View at Google Scholar
  24. The Stationery Office, Pharmacopoeia of People's Republic of China, Renouf Publishing Company, 2005.
  25. P. P. Mager and H. Rothe, “Obscure phenomena in statistical analysis of quantitative structure-activity relationships. Part 1: multicollinearity of physicochemical descriptors,” Pharmazie, vol. 45, no. 10, pp. 758–764, 1990. View at Google Scholar · View at Scopus
  26. W. M. Wells III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-modal volume registration by maximization of mutual information,” Medical Image Analysis, vol. 1, no. 1, pp. 35–51, 1996. View at Google Scholar · View at Scopus
  27. M.-L. Chen, V. Shah, R. Patnaik et al., “Bioavailability and bioequivalence: an FDA regulatory overview,” Pharmaceutical Research, vol. 18, no. 12, pp. 1645–1650, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Xu, W. Zhang, C. Huang et al., “A novel chemometric method for the prediction of human oral bioavailability,” International Journal of Molecular Sciences, vol. 13, no. 6, pp. 6964–6982, 2012. View at Google Scholar
  29. P. Willett, J. M. Barnard, and G. M. Downs, “Chemical similarity searching,” Journal of Chemical Information and Computer Sciences, vol. 38, no. 6, pp. 983–996, 1998. View at Google Scholar · View at Scopus
  30. F. Chen, E. A. Eckman, and C. B. Eckman, “Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenosides,” The FASEB Journal, vol. 20, no. 8, pp. 1269–1271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Hasegawa, J. H. Sung, and Y. Benno, “Role of human intestinal prevotella oris in hydrolyzing ginseng saponins,” Planta Medica, vol. 63, no. 5, pp. 436–440, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Tavan, H. Grubmuller, and H. Kuhnel, “Self-organization of associative memory and pattern classification: recurrent signal processing on topological feature maps,” Biological Cybernetics, vol. 64, no. 2, pp. 95–105, 1990. View at Publisher · View at Google Scholar · View at Scopus
  33. N. R. Pal, J. C. Bezdek, and E. C.-K. Tsao, “Generalized clustering networks and Kohonen's self-organizing scheme,” IEEE Transactions on Neural Networks, vol. 4, no. 4, pp. 549–557, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Louzoun and H. Atlan, “The emergence of goals in a self-organizing network: a non-mentalist model of intentional actions,” Neural Networks, vol. 20, no. 2, pp. 156–171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Yu, J. Chen, and X. Xu, “A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data,” PloS ONE, vol. 7, no. 5, Article ID e37608, 2012. View at Google Scholar
  36. M. E. Smoot, K. Ono, J. Ruscheinski, P. L. Wang, and T. Ideker, “Cytoscape 2.8: new features for data integration and network visualization,” Bioinformatics, vol. 27, no. 3, pp. 431–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. L. L. Yang, H. Ma, Y. Liu, and D. Hao, “Application of systems biology to absorption, distribution, metabolism and excretion in traditional Chinese medicine,” World Science and Technology, vol. 9, no. 1, pp. 98–104, 2007. View at Google Scholar
  38. W.-W. Chao and B.-F. Lin, “Bioactivities of major constituents isolated from Angelica sinensis (Danggui),” Chinese Medicine, vol. 6, no. 1, article 29, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. G. V. Paolini, R. H. Shapland, W. P. van Hoorn, J. S. Mason, and A. L. Hopkins, “Global mapping of pharmacological space,” Nature Biotechnology, vol. 24, no. 7, pp. 805–815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. T. I. Netzeva, J. C. Dearden, R. Edwards, A. D. P. Worgan, and M. T. D. Cronin, “QSAR analysis of the toxicity of aromatic compounds to chlorella vulgaris in a novel short-term assay,” Journal of Chemical Information and Computer Sciences, vol. 44, no. 1, pp. 258–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Sun, Y. Li, X. Liu et al., “Classification of bioaccumulative and non-bioaccumulative chemicals using statistical learning approaches,” Molecular Diversity, vol. 12, no. 3-4, pp. 157–169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. L. Hoo, J. Y. Wong, C. F. Qiao, A. Xu, H. X. Xu, and K. S. L. Lam, “The effective fraction isolated from Radix Astragali alleviates glucose intolerance, insulin resistance and hypertriglyceridemia in db/db diabetic mice through its anti-inflammatory activity,” Nutrition and Metabolism, vol. 7, no. 1, article 67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Jiang, “Ben cao tu jing (Illustrated Canon of Herbology) and the origin of modern identification of Chinese materia medica,” Zhonghua Yi Shi Za Zhi, vol. 29, no. 2, pp. 85–87, 1999. View at Google Scholar · View at Scopus
  44. A. Y. Hoi, M. N. Iskander, and E. F. Morand, “Macrophage migration inhibitory factor: a therapeutic target across inflammatory diseases,” Inflammation and Allergy, vol. 6, no. 3, pp. 183–190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Xu, L. Feng, S. Wang et al., “Calycosin protects HUVECs from advanced glycation end products-induced macrophage infiltration,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 359–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Korhonen, A. Lahti, H. Kankaanranta, and E. Moilanen, “Nitric oxide production and signaling in inflammation,” Current Drug Targets, vol. 4, no. 4, pp. 471–479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. Xiang, L. Ho, J. Valdellon et al., “Cyclooxygenase (COX)-2 and cell cycle activity in a transgenic mouse model of Alzheimer's disease neuropathology,” Neurobiology of Aging, vol. 23, no. 3, pp. 327–334, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Cui, M. Ao, W. Li, J. Hu, and L. Yu, “Anti-inflammatory activity of licochalcone a isolated from Glycyrrhiza inflata,” Zeitschrift fur Naturforschung C, vol. 63, no. 11, pp. 361–365, 2008. View at Google Scholar · View at Scopus
  49. Y. Yoshida, M. Q. Wang, J. N. Liu, B. E. Shan, and U. Yamashita, “Immunomodulating activity of Chinese medicinal herbs and Oldenlandia diffusa in particular,” International Journal of Immunopharmacology, vol. 19, no. 7, pp. 359–370, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Fuster and B. B. Kelly, Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health, National Academies Press, 2010.
  51. A. P. Dantas, F. Jiménez-Altayó, and E. Vila, “Vascular aging: facts and factors,” Frontiers in Physiology, vol. 3, no. 325, pp. 1–4, 2012. View at Google Scholar
  52. M. J. Rabito and A. D. Kaye, “Complementary and alternative medicine and cardiovascular disease: an evidence-based review,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 672097, 8 pages, 2013. View at Publisher · View at Google Scholar
  53. B. Fuhrman, N. Volkova, M. Kaplan et al., “Antiatherosclerotic effects of licorice extract supplementation on hypercholesterolemic patients: increased resistance of LDL to atherogenic modifications, reduced plasma lipid levels, and decreased systolic blood pressure,” Nutrition, vol. 18, no. 3, pp. 268–273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Zhan and J. Yang, “Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats,” Pharmacological Research, vol. 53, no. 3, pp. 303–309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Hoxha, E. Lambers, and H. Xie, “Histone deacetylase 1 deficiency impairs differentiation and electrophysiological properties of cardiomyocytes derived from induced pluripotent cells,” Stem Cells, vol. 30, no. 11, pp. 2412–2422, 2012. View at Google Scholar
  56. D. D. Roberts, T. W. Miller, N. M. Rogers, M. Yao, and J. S. Isenberg, “The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47,” Matrix Biology, vol. 31, no. 3, pp. 162–169, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Peng, S. Sun, L. H. Xie, S. M. Wicks, and J. T. Xie, “Ginsenoside Re: pharmacological effects on cardiovascular system,” Cardiovascular Therapeutics, vol. 30, no. 4, pp. e183–e188, 2012. View at Google Scholar
  58. N. Ferrara, “Vascular endothelial growth factor,” Trends in Cardiovascular Medicine, vol. 3, no. 6, pp. 244–250, 1993. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Ylä-Herttuala, T. T. Rissanen, I. Vajanto, and J. Hartikainen, “Vascular endothelial growth factors. Biology and current status of clinical applications in cardiovascular medicine,” Journal of the American College of Cardiology, vol. 49, no. 10, pp. 1015–1026, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. Y.-G. Ryu, B. Won, H. R. Park, K. Ghafoor, and J. Park, “Effects of the β-glycosidase reaction on bio-conversion of isoflavones and quality during tofu processing,” Journal of the Science of Food and Agriculture, vol. 90, no. 5, pp. 843–849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Yin, H. Zhang, and J. Ye, “Traditional Chinese medicine in treatment of metabolic syndrome,” Endocrine, Metabolic and Immune Disorders, vol. 8, no. 2, pp. 99–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Gautam, J. Jeon, J. H. Li et al., “Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review,” Journal of Receptor and Signal Transduction Research, vol. 28, no. 1-2, pp. 93–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. S. M. Rangwala and M. A. Lazar, “Peroxisome proliferator-activated receptor γ in diabetes and metabolism,” Trends in Pharmacological Sciences, vol. 25, no. 6, pp. 331–336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. A. F. Brotherton and J. C. Hoak, “Role of Ca2+ and cyclic AMP in the regulation of the production of prostacyclin by the vascular endothelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 2, pp. 495–499, 1982. View at Google Scholar · View at Scopus
  65. P. Y. K. Wong, W. H. Lee, P. H. W. Chao, and W. Y. Cheung, “The role of calmodulin in prostaglandin metabolism,” Annals of the New York Academy of Sciences, vol. 356, pp. 179–189, 1980. View at Google Scholar · View at Scopus
  66. F. P. Kuhajda, “Fatty acid synthase and cancer: new application of an old pathway,” Cancer Research, vol. 66, no. 12, pp. 5977–5980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. W.-J. Ruan, M.-D. Lai, and J.-G. Zhou, “Anticancer effects of Chinese herbal medicine, science or myth?” Journal of Zhejiang University Science B, vol. 7, no. 12, pp. 1006–1014, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. C.-Z. Wang, B. Zhang, W.-X. Song et al., “Steamed American ginseng berry: ginsenoside analyses and anticancer activities,” Journal of Agricultural and Food Chemistry, vol. 54, no. 26, pp. 9936–9942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. G. I. Shapiro, “Cyclin-dependent kinase pathways as targets for cancer treatment,” Journal of Clinical Oncology, vol. 24, no. 11, pp. 1770–1783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Tripathi and U. Srivastava, “Acetylcholinesterase: a versatile enzyme of nervous system,” Annals of Neurosciences, vol. 15, no. 4, pp. 106–111, 2010. View at Google Scholar
  71. M. F. Waters, N. A. Minassian, G. Stevanin et al., “Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes,” Nature Genetics, vol. 38, no. 4, pp. 447–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. E.-J. Yang, J. S. Min, H.-Y. Ku et al., “Isoliquiritigenin isolated from Glycyrrhiza uralensis protects neuronal cells against glutamate-induced mitochondrial dysfunction,” Biochemical and Biophysical Research Communications, vol. 421, no. 4, pp. 658–664, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. Z. Q. Liu, Q. Z. Li, and G. J. Qin, “Effect of Astragalus injection on platelet function and plasma endothelin in patients with early stage diabetic nephropathy,” Zhongguo Zhong Xi Yi Jie He Za Zhi, vol. 21, no. 4, pp. 274–276, 2001. View at Google Scholar · View at Scopus
  74. H. Xu, X. Yu, S. Qu et al., “In vivo and in vitro cardioprotective effects of Panax quinquefolium 20 (S)-protopanaxadiol saponins (PQDS), isolated from Panax quinquefolium,” An International Journal of Pharmaceutical Sciences, vol. 68, no. 4, pp. 287–292, 2013. View at Google Scholar
  75. A. Alqahtani, K. Hamid, A. Kam et al., “The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications,” Current Medicinal Chemistry, vol. 20, no. 7, pp. 908–931, 2013. View at Google Scholar
  76. Z. Wang, J. Wang, and P. Chan, “Treating type 2 diabetes mellitus with traditional Chinese and Indian medicinal herbs,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 343597, 17 pages, 2013. View at Publisher · View at Google Scholar
  77. K.-S. Kim, H. J. Yang, E.-K. Choi et al., “The effects of complex herbal medicine composed of Cornus fructus, Dioscoreae rhizoma, Aurantii fructus, and Mori folium in obese type-2 diabetes mice model,” Oriental Pharmacy and Experimental Medicine, vol. 13, no. 1, pp. 69–75, 2013. View at Google Scholar
  78. C. L. Chang, Y. Lin, A. P. Bartolome, Y. C. Chen, S. C. Chiu, and W. C. Yang, “Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 378657, 33 pages, 2013. View at Publisher · View at Google Scholar
  79. S. Fetscher and R. Mertelsmann, “Supportive care in hematological malignancies: hematopoietic growth factors, infections, transfusion therapy,” Current Opinion in Hematology, vol. 6, no. 4, pp. 262–273, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Rennick, J. Jackson, G. Yang, J. Wideman, F. Lee, and S. Hudak, “Interleukin-6 interacts with interleukin-4 and other hematopoietic growth factors to selectively enhance the growth of megakaryocytic, erythroid, myeloid, and multipotential progenitor cells,” Blood, vol. 73, no. 7, pp. 1828–1835, 1989. View at Google Scholar · View at Scopus
  81. G. D. Roodman, A. Bird, D. Hutzler, and W. Montgomery, “Tumor necrosis factor-alpha and hematopoietic progenitors: effects of tumor necrosis factor on the growth of erythroid progenitors CFU-E and BFU-E and the hematopoietic cell lines K562, HL60, and HEL cells,” Experimental Hematology, vol. 15, no. 9, pp. 928–935, 1987. View at Google Scholar · View at Scopus
  82. X. Liu and C.-K. Qu, “Protein tyrosine phosphatase SHP-2 (PTPN11) in hematopoiesis and leukemogenesis,” Journal of Signal Transduction, vol. 2011, Article ID 195239, 8 pages, 2011. View at Publisher · View at Google Scholar
  83. Y. M. Ikushima, F. Arai, K. Hosokawa et al., “Prostaglandin E2 regulates murine hematopoietic stem/progenitor cells directly via EP4 receptor and indirectly through mesenchymal progenitor cells,” Blood, vol. 121, no. 11, pp. 1995–2007, 2013. View at Google Scholar
  84. Z. C. Ma, Q. Hong, Y. G. Wang et al., “Effects of ferulic acid on hematopoietic cell recovery in whole-body gamma irradiated mice,” International Journal of Radiation Biology, vol. 87, no. 5, pp. 499–505, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Quarto, G. Bianchi, A. Derubeis et al., “Bone marrow stromal cells: cell biology & clinical applications,” The European Cells and Materials, vol. 4, supplement 1, p. 28, 2002. View at Google Scholar
  86. A. Karadag and L. W. Fisher, “Bone sialoprotein enhances migration of bone marrow stromal cells through matrices by bridging MMP-2 to αvβ3-integrin,” Journal of Bone and Mineral Research, vol. 21, no. 10, pp. 1627–1636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. I. F. Charo, L. Nannizzi, J. W. Smith, and D. A. Cheresh, “The vitronectin receptor α(v)β3 bind fibronectin and acts in concert with α5β1 in promoting cellular attachment and spreading on fibronectin,” Journal of Cell Biology, vol. 111, no. 6, pp. 2795–2800, 1990. View at Publisher · View at Google Scholar · View at Scopus
  88. B. Seshi, “Discovery of novel hematopoietic cell adhesion molecules from human bone marrow stromal cell membrane protein extracts by a new cell-blotting technique,” Blood, vol. 83, no. 9, pp. 2399–2409, 1994. View at Google Scholar · View at Scopus
  89. C. Liu, J. Li, F. Y. Meng et al., “Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway,” BMC Complementary and Alternative Medicine, vol. 10, no. 1, article 79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Hoggatt, P. Singh, J. Sampath, and L. M. Pelus, “Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation,” Blood, vol. 113, no. 22, pp. 5444–5455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Domen, “The role of apoptosis in regulating hematopoietic stem cell numbers,” Apoptosis, vol. 6, no. 4, pp. 239–252, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. A. G. Porter and R. U. Jänicke, “Emerging roles of caspase-3 in apoptosis,” Cell Death and Differentiation, vol. 6, no. 2, pp. 99–104, 1999. View at Google Scholar · View at Scopus
  93. C. Chen, Z. Chen, and F. Xu, “Radio-protective effect of catalpol in cultured cells and mice,” Journal of Radiation Research, vol. 54, no. 1, pp. 76–82, 2013. View at Google Scholar
  94. R. Baumann, C. Casaulta, D. Simon, S. Conus, S. Yousefi, and H.-U. Simon, “Macrophage migration inhibitory factor delays apoptosis in neutrophils by inhibiting the mitochondria-dependent death pathway,” The FASEB Journal, vol. 17, no. 15, pp. 2221–2230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. R. T. Calado, W. T. Yewdell, K. L. Wilkerson et al., “Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells,” Blood, vol. 114, no. 11, pp. 2236–2243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. J. F. Navarro and C. Mora, “Androgen therapy for anemia in elderly uremic patients,” International Urology and Nephrology, vol. 32, no. 4, pp. 549–557, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Zhang, P. Shen, and Y. Cheng, “Identification and determination of the major constituents in traditional Chinese medicine Si-Wu-Tang by HPLC coupled with DAD and ESI-MS,” Journal of Pharmaceutical and Biomedical Analysis, vol. 34, no. 3, pp. 705–713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. E. M. Williamson, “Synergy and other interactions in phytomedicines,” Phytomedicine, vol. 8, no. 5, pp. 401–409, 2001. View at Google Scholar · View at Scopus