Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 948627, 10 pages
http://dx.doi.org/10.1155/2013/948627
Research Article

Metabolic Effects of Mulberry Leaves: Exploring Potential Benefits in Type 2 Diabetes and Hyperuricemia

1Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, Szeged 6720, Hungary
2Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, Szeged 6720, Hungary
3Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 13, Szeged 6720, Hungary
4Unidade de Parasitologia e Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
5Department of Genome Medicine, College of Medicine, Kaohsiung Medical University, Shih Chuan 1st Rd. 100, Kaohsiung 807, Taiwan

Received 24 July 2013; Accepted 18 October 2013

Academic Editor: C. S. Cho

Copyright © 2013 A. Hunyadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. W. Campion, R. J. Glynn, and L. O. DeLabry, “Asymptomatic hyperuricemia: risks and consequences in the normative aging study,” The American Journal of Medicine, vol. 82, no. 3, pp. 421–426, 1987. View at Google Scholar · View at Scopus
  2. E. Krishnan, B. J. Pandya, L. Chung, and O. Dabbous, “Hyperuricemia and the risk for subclinical coronary atherosclerosis: data from a prospective observational cohort study,” Arthritis Research & Therapy, vol. 13, p. R66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Higgins, J. Dawson, and M. Walters, “The potential for xanthine oxidase inhibition in the prevention and treatment of cardiovascular and cerebrovascular disease,” Cardiovascular Psychiatry and Neurology, vol. 2009, Article ID 282059, 9 pages, 2009. View at Publisher · View at Google Scholar
  4. P. Pacher, A. Nivorozhkin, and C. Szabó, “Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol,” Pharmacological Reviews, vol. 58, no. 1, pp. 87–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Changgui, H. Ming-Chia, and C. Shun-Jen, “Metabolic syndrome, diabetes, and hyperuricemia,” Current Opinion in Rheumatology, vol. 25, no. 2, pp. 210–216, 2013. View at Google Scholar
  6. M. A. Suriyajothi, R. Sangeetha, and R. Venkateswari, “Activity of Xanthine oxidase in diabetics: its correlation with aging,” Pharmacologyonline, vol. 2, pp. 128–133, 2011. View at Google Scholar · View at Scopus
  7. S. Ryu, J. Song, B.-Y. Choi et al., “Incidence and risk factors for metabolic syndrome in Korean male workers, ages 30 to 39,” Annals of Epidemiology, vol. 17, no. 4, pp. 245–252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Sui, T. S. Church, R. A. Meriwether, F. Lobelo, and S. N. Blair, “Uric acid and the development of metabolic syndrome in women and men,” Metabolism, vol. 57, no. 6, pp. 845–852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Ito, M. Abe, M. Mifune et al., “Hyperuricemia is independently associated with coronary heart disease and renal dysfunction in patients with type 2 diabetes mellitus,” PloS ONE, vol. 6, no. 11, Article ID e27817, 2011. View at Google Scholar · View at Scopus
  10. C. L. T. Chang, Y. Lin, A. P. Bartolome, Y. C. Chen, S. C. Chiu, and W. C. Yang, “Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 378657, 33 pages, 2013. View at Publisher · View at Google Scholar
  11. Z. Wang, J. Wang, and P. Chan, “Treating type 2 diabetes mellitus with traditional Chinese and Indian medicinal herbs,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 343594, 17 pages, 2013. View at Publisher · View at Google Scholar
  12. D. Bensky and A. Gamble, Chinese Herbal Medicine, Materia Medica, Eastland Press, Seattle, Wash, USA, 1986.
  13. J. Anjaria, M. Parabia, G. Bhatt, and R. Khamar, Nature Heals, A Glossary of Selected Indigenous Medicinal Plants of India, Sristi Innovations, Ahmedabad, India, 2002.
  14. A. N. B. Singab, H. A. El-Beshbishy, M. Yonekawa, T. Nomura, and T. Fukai, “Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats,” Journal of Ethnopharmacology, vol. 100, no. 3, pp. 333–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Lemus, R. García, E. Delvillar, and G. Knop, “Hypoglycaemic activity of four plants used in Chilean popular medicine,” Phytotherapy Research, vol. 13, no. 2, pp. 91–94, 1999. View at Google Scholar
  16. A. Hunyadi, A. Martins, T. J. Hsieh, A. Seres, and I. Zupkó, “Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic Activity of Morus alba leaf extract on type II diabetic rats,” PloS ONE, vol. 7, no. 11, Article ID e50619, 2012. View at Google Scholar
  17. M. Mudra, N. Ercan-Fang, L. Zhong, J. Furne, and M. Levitt, “Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects,” Diabetes Care, vol. 30, no. 5, pp. 1272–1274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Kimura, K. Nakagawa, H. Kubota et al., “Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans,” Journal of Agricultural and Food Chemistry, vol. 55, no. 14, pp. 5869–5874, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Hunyadi, K. Veres, B. Danko et al., “In vitro anti-diabetic activity and chemical characterization of an apolar fraction of Morus alba leaf water extract,” Phytotherapy Research, vol. 27, pp. 847–851, 2013. View at Google Scholar
  20. Y. W. Shia, C. P. Wang, X. Wang et al., “Uricosuric and nephroprotective properties of Ramulus Mori ethanol extract in hyperuricemic mice,” Journal of Ethnopharmacology, vol. 143, no. 3, pp. 896–904, 2012. View at Google Scholar
  21. C.-P. Wang, Y. Wang, X. Wang et al., “Mulberroside A possesses potent uricosuric and nephroprotective effects in hyperuricemic mice,” Planta Medica, vol. 77, no. 8, pp. 786–794, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Yu, P. F. Wing, and C. H. K. Cheng, “The dual actions of morin (3,5,7,2′,4′-pentahydroxyflavone) as a hypouricemic agent: uricosuric effect and xanthine oxidase inhibitory activity,” Journal of Pharmacology and Experimental Therapeutics, vol. 316, no. 1, pp. 169–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Yu, P. F. Wing, and C. H. K. Cheng, “Morin (3,5,7,2′,4′-pentahydroxyflavone) exhibits potent inhibitory actions on urate transport by the human urate anion transporter (hURAT1) expressed in human embryonic kidney cells,” Drug Metabolism and Disposition, vol. 35, no. 6, pp. 981–986, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Nakagawa, K. Ogawa, O. Higuchi, T. Kimura, T. Miyazawa, and M. Hori, “Determination of iminosugars in mulberry leaves and silkworms using hydrophilic interaction chromatography-tandem mass spectrometry,” Analytical Biochemistry, vol. 404, no. 2, pp. 217–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H. G. Vogel, Ed., Drug Discovery and Evaluation: Pharmacological Assays, Springer, Berlin, Germany, 2002.
  26. Z. Hajdú, J. Hohmann, P. Forgo et al., “Diterpenoids and flavonoids from the fruits of Vitex agnus-castus and antioxidant activity of the fruit extracts and their constituents,” Phytotherapy Research, vol. 21, no. 4, pp. 391–394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Zupkó, J. Hohmann, D. Rédei, G. Falkay, G. Janicsák, and I. Máthé, “Antioxidant activity of leaves of Salvia species in enzyme-dependent and enzyme-independent systems of lipid peroxidation and their phenolic constituents,” Planta Medica, vol. 67, no. 4, pp. 366–368, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Fridovich, “The competitive inhibition of uricase by oxonate and by related derivatives of s-triazines,” The Journal of biological chemistry, vol. 240, pp. 2491–2494, 1965. View at Google Scholar · View at Scopus
  29. P. Trinder, “Determination of glucose in blood using oxidase with an alternative oxygen acceptor,” Annals of Clinical Biochemistry, vol. 6, pp. 24–27, 1969. View at Google Scholar
  30. C. J. Zuurbier, F. J. Hoek, J. Van Dijk et al., “Perioperative hyperinsulinaemic normoglycaemic clamp causes hypolipidaemia after coronary artery surgery,” British Journal of Anaesthesia, vol. 100, no. 4, pp. 442–450, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Minorics, T. Szekeres, G. Krupitza et al., “Antiproliferative effects of some novel synthetic solanidine analogs on HL-60 human leukemia cells in vitro,” Steroids, vol. 76, no. 1-2, pp. 156–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Caspi, E. Lubart, E. Graff, B. Habot, M. Yaron, and R. Segal, “The effect of mini-dose aspirin on renal function and uric acid handling in elderly patients,” Arthritis and Rheumatism, vol. 43, pp. 103–108, 2000. View at Google Scholar