Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 972814, 12 pages
http://dx.doi.org/10.1155/2013/972814
Research Article

Identification of Immunomodulatory Signatures Induced by American Ginseng in Murine Immune Cells

1Department of Primary/Public Health, Nursing College, Molecular Resource Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
2Department of Orthopedics Surgery & Biomedical Engineering-Campbell Clinic, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
3Mudanjiang Medical University, Heilongjiang 157011, China

Received 30 July 2013; Revised 23 September 2013; Accepted 1 October 2013

Academic Editor: Raffaele Capasso

Copyright © 2013 Jian Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-F. Chen, W.-F. Chiou, and J.-T. Zhang, “Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium,” Acta Pharmacologica Sinica, vol. 29, no. 9, pp. 1103–1108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Bent and R. Ko, “Commonly used herbal medicines in the United States: a review,” American Journal of Medicine, vol. 116, no. 7, pp. 478–485, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. C. Miller, L. Ti, and J. Shan, “Dietary supplementation with an extract of North American ginseng in adult and juvenile mice increases natural killer cells,” Immunological Investigations, vol. 41, no. 2, pp. 157–170, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. H. R. Lemmon, J. Sham, L. A. Chau, and J. Madrenas, “High molecular weight polysaccharides are key immunomodulators in North American ginseng extracts: characterization of the ginseng genetic signature in primary human immune cells,” Journal of Ethnopharmacology, vol. 142, no. 1, pp. 1–13, 2012. View at Google Scholar
  5. L.-W. Qi, C.-Z. Wang, and C.-S. Yuan, “Ginsenosides from American ginseng: chemical and pharmacological diversity,” Phytochemistry, vol. 72, no. 8, pp. 689–699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. G. Azike, P. A. Charpentier, J. Hou, H. Pei, and E. M. King Lui, “The Yin and Yang actions of North American ginseng root in modulating the immune function of macrophages,” Chinese Medicine, vol. 6, article 21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C.-S. Yuan, C.-Z. Wang, S. M. Wicks, and L.-W. Qi, “Chemical and pharmacological studies of saponins with a focus on American ginseng,” Journal of Ginseng Research, vol. 34, no. 3, pp. 160–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Wang, L. J. Guilbert, J. Li et al., “A proprietary extract from North American ginseng (Panax quinquefolium) enhances IL-2 and IFN-γ productions in murine spleen cells induced by Con-A,” International Immunopharmacology, vol. 4, no. 2, pp. 311–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. P. D. Biondo, S. Goruk, M. R. Ruth, E. O'Connell, and C. J. Field, “Effect of CVT-E002 (COLD-fX) versus a ginsenoside extract on systemic and gut-associated immune function,” International Immunopharmacology, vol. 8, no. 8, pp. 1134–1142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. E. M. Schlag and M. S. McIntosh, “Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations,” Phytochemistry, vol. 67, no. 14, pp. 1510–1519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. K. Davis, G. T. Stevenson, and K. A. Busch, “Tumor incidence in normal Sprague-Dawley female rats,” Cancer Research, vol. 16, no. 3, pp. 194–197, 1956. View at Google Scholar
  12. J. J. Wee, K. Mee Park, and A. S. Chung, “Biological activities of ginseng and its application to human health,” in Herbal Medicine: Biomolecular and Clinical Aspects, I. F. F. Benzie and S. Wachtel-Galor, Eds., CRC Press, Boca Raton, Fla, USA, 2nd edition, 2011. View at Google Scholar
  13. T. A. Long, S. M. Brady, and P. N. Benfey, “Systems approaches to identifying gene regulatory networks in plants,” Annual Review of Cell and Developmental Biology, vol. 24, pp. 81–103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. T. K. H. Chang, J. Chen, and S. A. Benetton, “In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1,” Drug Metabolism and Disposition, vol. 30, no. 4, pp. 378–384, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Rai, G. Bhatia, G. Palit, R. Pal, S. Singh, and H. K. Singh, “Adaptogenic effect of Bacopa monniera (Brahmi),” Pharmacology Biochemistry and Behavior, vol. 75, no. 4, pp. 823–830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Jiang, S. DeSilva, and J. Turnbull, “Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice,” Journal of the Neurological Sciences, vol. 180, no. 1-2, pp. 52–54, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Ebeling, Y. Wu, C. Skappak, J. R. Gordon, R. Ilarraza, and D. J. Adamko, “Compound CVT-E002 attenuates allergen-induced airway inflammation and airway hyperresponsiveness, in vivo,” Molecular Nutrition and Food Research, vol. 55, no. 12, pp. 1905–1908, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. See, N. Broumand, L. Sahl, and J. G. Tilles, “In vitro effects of echinacea and ginseng on natural killer and antibody-dependent cell cytotoxicity in healthy subjects and chronic fatigue syndrome or acquired immunodeficiency syndrome patients,” Immunopharmacology, vol. 35, no. 3, pp. 229–235, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. Samarajiwa, S. Forster, K. Auchettl, and P. J. Hertzog, “INTERFEROME: the database of interferon regulated genes,” Nucleic Acids Research, vol. 37, no. 1, pp. D852–D857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Dwyer and C. Johnson, “The use of concanavalin A to study the immunoregulation of human T cells,” Clinical and Experimental Immunology, vol. 46, no. 2, pp. 237–249, 1981. View at Google Scholar · View at Scopus
  22. J. E. Kunicka, M. A. Talle, G. H. Denhardt, M. Brown, L. A. Prince, and G. Goldstein, “Immunosuppression by glucocorticoids: inhibition of production of multiple lymphokines by in vivo administration of dexamethasone,” Cellular Immunology, vol. 149, no. 1, pp. 39–49, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. A. D. Wist, S. I. Berger, and R. Iyengar, “Systems pharmacology and genome medicine: a future perspective,” Genome Medicine, vol. 1, no. 1, article gm11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. R. Schoenborn and C. B. Wilson, “Regulation of interferon-gamma during innate and adaptive immune responses,” Advances in Immunology, vol. 96, pp. 41–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. R. Zaidi and G. Merlino, “The two faces of interferon-γ in cancer,” Clinical Cancer Research, vol. 17, no. 19, pp. 6118–6124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. J. Szabo, S. T. Kim, G. L. Costa, X. Zhang, C. G. Fathman, and L. H. Glimcher, “A novel transcription factor, T-bet, directs Th1 lineage commitment,” Cell, vol. 100, no. 6, pp. 655–669, 2000. View at Google Scholar · View at Scopus
  27. W.-R. Park, M. Nakahira, N. Sugimoto et al., “A mechanism underlying STAT4-mediated up-regulation of IFN-γ induction in TCR-triggered T cells,” International Immunology, vol. 16, no. 2, pp. 295–302, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Saha, S. Jyothi Prasanna, B. Chandrasekar, and D. Nandi, “Gene modulation and immunoregulatory roles of Interferonγ,” Cytokine, vol. 50, no. 1, pp. 1–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Lio, L. Scola, A. Crivello et al., “Allele frequencies of +874T → a single nucleotide polymorphism at the first intron of interferon-γ gene in a group of Italian centenarians,” Experimental Gerontology, vol. 37, no. 2-3, pp. 315–319, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. G. F. Oxenkrug, “Interferon-gamma—inducible inflammation: contribution to aging and aging-associated psychiatric disorders,” Aging and Disease, vol. 2, no. 6, pp. 474–486, 2011. View at Google Scholar
  31. G. F. Oxenkrug, “Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders,” Journal of Neural Transmission, vol. 118, no. 1, pp. 75–85, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Wu, New Compilation of Materia Medica, 1757.
  33. A. M. Cole, H.-I. Liao, O. Stuchlik, J. Tilan, J. Pohl, and T. Ganz, “Cationic polypeptides are required for antibacterial activity of human airway fluid,” Journal of Immunology, vol. 169, no. 12, pp. 6985–6991, 2002. View at Google Scholar · View at Scopus
  34. R. Dajani, Y. Zhang, P. J. Taft et al., “Lysozyme secretion by submucosal glands protects the airway from bacterial infection,” American Journal of Respiratory Cell and Molecular Biology, vol. 32, no. 6, pp. 548–552, 2005. View at Publisher · View at Google Scholar · View at Scopus