Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 138587, 7 pages
http://dx.doi.org/10.1155/2014/138587
Research Article

In Vitro Screening of 10 Edible Thai Plants for Potential Antifungal Properties

1Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
2Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
3Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

Received 22 August 2013; Revised 26 November 2013; Accepted 26 November 2013; Published 2 January 2014

Academic Editor: Angelo Antonio Izzo

Copyright © 2014 Supattra Suwanmanee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. C. Stein, M. Sortino, C. Avancini, S. Zacchino, and G. Von Poser, “Ethnoveterinary medicine in the search for antimicrobial agents: antifungal activity of some species of Pterocaulon (Asteraceae),” Journal of Ethnopharmacology, vol. 99, no. 2, pp. 211–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Svetaz, F. Zuljan, M. Derita et al., “Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries,” Journal of Ethnopharmacology, vol. 127, no. 1, pp. 137–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Webster, P. Taschereau, R. J. Belland, C. Sand, and R. P. Rennie, “Antifungal activity of medicinal plant extracts; preliminary screening studies,” Journal of Ethnopharmacology, vol. 115, no. 1, pp. 140–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Association of Official Analysis Chemists, Official Method of Analysis of the AOAC International, AOAC, Arlington, Va, USA, 16th edition, 1995.
  5. J. Kosin, N. Ruangrungsi, C. Ito, and H. Furukawa, “A xanthone from Garcinia atroviridis,” Phytochemistry, vol. 47, no. 6, pp. 1167–1168, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. R. S. Koff, G. Gordan, and S. M. Sabesin, “D-Galactosamine hepatitis hepatocellular injury and fatty liver following a single dose,” Experimental Biology and Medicine, vol. 137, no. 2, pp. 696–701, 1971. View at Google Scholar
  7. H. Wang, G. J. Provan, and K. Helliwell, “HPLC determination of catechins in tea leaves and tea extracts using relative response factors,” Food Chemistry, vol. 81, no. 2, pp. 307–312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. H.-Y. Sohn, K. H. Son, C.-S. Kwon, G.-S. Kwon, and S. S. Kang, “Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai,” Phytomedicine, vol. 11, no. 7-8, pp. 666–672, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Balakumar, S. Rajan, T. Thirunalasundari, and S. Jeeva, “Antifungal activity of Aegle marmelos (L.) Correa (Rutaceae) leaf extract on dermatophytes,” Asian Pacific Journal of Tropical Biomedicine, vol. 1, no. 4, pp. 309–312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. P. K. Mishra, R. Shukla, P. Singh, B. Prakash, and N. K. Dubey, “Antifungal and antiaflatoxigenic efficacy of Caesulia axillaris Roxb. essential oil against fungi deteriorating some herbal raw materials, and its antioxidant activity,” Industrial Crops and Products, vol. 36, no. 1, pp. 74–80, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Pancharoen, P. Tuntiwachwuttikul, W. C. Taylor, and K. Picker, “Triterpenoid glycosides from Schefflera lucantha,” Phytochemistry, vol. 35, no. 4, pp. 987–992, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Walters, B. Meurer-Grimes, and I. Rovira, “Antifungal activity of three spermidine conjugates,” FEMS Microbiology Letters, vol. 201, no. 2, pp. 255–258, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Li, F. Chen, and J. Luo, “GC-MS analysis of essential oil from the leaves of Psidium guajava,” Journal of Chinese Medicinal Materials, vol. 22, no. 2, pp. 78–80, 1999. View at Google Scholar · View at Scopus
  14. R. M. P. Gutiérrez, S. Mitchell, and R. V. Solis, “Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology,” Journal of Ethnopharmacology, vol. 117, no. 1, pp. 1–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Vargas-Alvarez, M. Soto-Hernández, V. A. Gonzáles-Hernández, E. M. Engleman, and Á. Martínez-Garza, “Kinetics of accumulation and distribution of flavonoids in Guava (Psidium guajava L.),” Agrociencia, vol. 40, no. 1, pp. 109–115, 2006. View at Google Scholar · View at Scopus
  16. National Committee on Clinical Laboratory Standards, “Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard, 2nd ed,” NCCLS Document M27-A2, 2002. View at Google Scholar
  17. National Committee on Clinical Laboratory Standards, “Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard,” NCCLS Document M38-A, Wayne, Pa, USA, 2002. View at Google Scholar
  18. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  19. K. F. Chah, C. A. Eze, C. E. Emuelosi, and C. O. Esimone, “Antibacterial and wound healing properties of methanolic extracts of some Nigerian medicinal plants,” Journal of Ethnopharmacology, vol. 104, no. 1-2, pp. 164–167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. G. R. Prabu, A. Gnanamani, and S. Sadulla, “Guaijaverin—a plant flavonoid as potential antiplaque agent against Streptococcus mutans,” Journal of Applied Microbiology, vol. 101, no. 2, pp. 487–495, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Arima and G.-I. Danno, “Isolation of antimicrobial compounds from guava (Psidium guajava L.) and their structural elucidation,” Bioscience, Biotechnology and Biochemistry, vol. 66, no. 8, pp. 1727–1730, 2002. View at Google Scholar · View at Scopus
  22. S. García, M. Araiza, M. Gómez, and N. Heredia, “Inhibition of growth, enterotoxin production, and spore formation of Clostridium perfringens by extracts of medicinal plants,” Journal of Food Protection, vol. 65, no. 10, pp. 1667–1669, 2002. View at Google Scholar · View at Scopus
  23. J. Nguefack, V. Leth, P. H. Amvam Zollo, and S. B. Mathur, “Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi,” International Journal of Food Microbiology, vol. 94, no. 3, pp. 329–334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. B. M. Sundaram, C. Gopalakrishnan, and S. Subramanian, “Antimicrobial activities of Garcinia mangostana,” Planta Medica, vol. 48, no. 1, pp. 59–60, 1983. View at Google Scholar · View at Scopus
  25. M. Friedman, “Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas,” Molecular Nutrition and Food Research, vol. 51, no. 1, pp. 116–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Masuda, Y. Inaba, T. Maekawa et al., “Simple detection method of powerful antiradical compounds in the raw extract of plants and its application for the identification of antiradical plant constituents,” Journal of Agricultural and Food Chemistry, vol. 51, no. 7, pp. 1831–1838, 2003. View at Publisher · View at Google Scholar · View at Scopus