Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 145901, 13 pages
http://dx.doi.org/10.1155/2014/145901
Research Article

Ameliorative Effect of Hexane Extract of Phalaris canariensis on High Fat Diet-Induced Obese and Streptozotocin-Induced Diabetic Mice

1Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Instituto Politecnico Nacional, Avenida Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo Lopez Mateos, 07708 Mexico D.F., Mexico
2Departamento de Alimentos, Escuela Nacional de Ciencias Biologicas, IPN Carpio S/N, 11340 Mexico D.F., Mexico
3Departamento de Biotecnología y Bioingenieria, CINVESTAV, Avenida IPN S/N, 07360 Mexico D.F., Mexico
4Departamento de Ciencias, Basicas Unidad Profesional de Biotecnologia IPN, Avenida Acueducto S/N, 07340 Mexico D.F., Mexico

Received 11 May 2013; Revised 21 November 2013; Accepted 27 November 2013; Published 9 January 2014

Academic Editor: Musa T. Yakubu

Copyright © 2014 Rosa Martha Perez Gutierrez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S.-I. Kang, H.-S. Shin, H.-M. Kim et al., “Anti-obesity properties of a Sasa quelpaertensis extract in high-fat diet-induced obese mice,” Bioscience, Biotechnology and Biochemistry, vol. 76, no. 4, pp. 755–761, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Miyata, T. Koyama, T. Kamitani, T. Toda, and K. Yazawa, “Anti-obesity effect on rodents of the traditional japanese food, tororokombu, shaved Laminaria,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 10, pp. 2326–2328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Colagiuri, “Diabesity: therapeutic options,” Diabetes, Obesity and Metabolism, vol. 12, no. 6, pp. 463–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. F. I. Achike, N.-H. P. To, H. Wang, and C.-Y. Kwan, “Obesity, metabolic syndrome, adipocytes and vascular function: a holistic viewpoint,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 1, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. E. E. Kershaw and J. S. Flier, “Adipose tissue as an endocrine organ,” The Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2548–2556, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Boden and G. I. Shulman, “Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction,” European Journal of Clinical Investigation, vol. 32, no. 3, pp. 14–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. E. J. Gallagher, D. Leroith, and E. Karnieli, “Insulin resistance in obesity as the underlying cause for the metabolic syndrome,” Mount Sinai Journal of Medicine, vol. 77, no. 5, pp. 511–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Birari, V. Javia, and K. K. Bhutani, “Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats,” Fitoterapia, vol. 81, no. 8, pp. 1129–1133, 2010. View at Google Scholar
  9. I. Melnikova and D. Wages, “Anti-obesity therapies,” Nature Reviews Drug Discovery, vol. 5, no. 5, pp. 369–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Mukherjee, “Human digestive and metabolic lipases—a brief review,” Journal of Molecular Catalysis B, vol. 22, no. 5-6, pp. 369–376, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. H. Putnam, P. R. Miller, and P. Hucl, “Potential for production and utilization of annual canarygrass,” Cereal Foods World, vol. 41, no. 2, pp. 75–83, 1996. View at Google Scholar · View at Scopus
  12. C. H. O'Neill, G. M. Hodges, and P. N. Riddle, “A fine fibrous silica contaminant of flour in the high oesophageal cancer area of the north-east Iran,” International Journal of Cancer, vol. 26, no. 5, pp. 617–628, 1980. View at Google Scholar · View at Scopus
  13. P. Hucl, M. Matus-Cadiz, A. Vandenberg et al., “CDC Maria annual canarygrass,” Canadian Journal of Plant Science, vol. 81, no. 1, pp. 115–116, 2001. View at Google Scholar · View at Scopus
  14. A. Merzouki, F. Ed-Derfoufi, and J. Molero-Mesa, “Contribución al conocimiento de la medicina rifeña tradicional lll: fitoterapia de la diabetes en la provincia de Chefchaouen (norte de Marruecos),” ARS Pharmaceutica, vol. 44, no. 1, pp. 59–67, 2003. View at Google Scholar
  15. M. J. Novas, A. M. Jiménez, and A. O. Asuero, “Determination of antioxidant activity of canary seed infusions by chemiluminescence,” Analytical Chemistry, vol. 59, no. 1, pp. 75–77, 2004. View at Google Scholar
  16. A. P. C. Balbi, K. E. Campos, and M. J. Q. F. Alves, “Hypotensive effect of canary grass (Phalaris canariensis L.) aqueous extract in rats,” Revista Brasileira de Plantas Medicinais, vol. 10, no. 3, pp. 51–56, 2008. View at Google Scholar · View at Scopus
  17. F. Martinello, S. M. Soares, J. J. Franco et al., “Hypolipemic and antioxidant activities from Tamarindus indica L. pulp fruit extract in hypercholesterolemic hamsters,” Food and Chemical Toxicology, vol. 44, no. 6, pp. 810–818, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Mohammadi and P. Naik, “Evaluation of hypoglycemic effect of Morus alba in an animal model,” Indian Journal of Pharmacology, vol. 40, no. 1, pp. 15–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sharma, M. W. Siddique, M. Shamirn, S. Gyanesh, and K. K. Pillai, “Evaluation of antidiabetic and antioxidant effects of seabuckthorn (Hippophae rhamnoides L.)in streptozotocin-nicotinamide induced diabetic rats,” The Open Conference Proceeding Journal, vol. 2, no. 4, pp. 53–58, 2011. View at Google Scholar
  20. Y.-C. Chou, Y.-C. Tsai, C.-M. Chen, S.-M. Chen, and J.-A. Lee, “Determination of lipoprotein lipase activity in post heparin plasma of streptozotocin-induced diabetic rats by high-performance liquid chromatography with flourescence detection,” Biomedical Chromatography, vol. 22, no. 5, pp. 502–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Li, D. H. Kim, P. L. Tsenovoy et al., “Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance,” Diabetes, vol. 57, no. 6, pp. 1526–1535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S.-E. Park, M.-H. Cho, J. K. Lim et al., “A new colorimetric method for determining the isomerization activity of sucrose isomerase,” Bioscience, Biotechnology and Biochemistry, vol. 71, no. 2, pp. 583–586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. C. G. Fraga, B. E. Leibovitz, and A. L. Tappel, “Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices. Characterization and comparison with homogenates and microsomes,” Free Radical Biology and Medicine, vol. 4, no. 3, pp. 155–161, 1988. View at Google Scholar · View at Scopus
  24. S. Bolkent, R. Yanardag, O. Karabulut-Bulan, and B. Yesilyaprak, “Protective role of Melissa officinalis L. extract on liver of hyperlipidemic rats: a morphological and biochemical study,” Journal of Ethnopharmacology, vol. 99, no. 3, pp. 391–398, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. T. L. Kinney LaPier and K. J. Rodnick, “Effects of aerobic exercise on energy metabolism in the hypertensive rat heart,” Physical Therapy, vol. 81, no. 4, pp. 1006–1017, 2001. View at Google Scholar · View at Scopus
  26. S. N. Davis and D. K. Granner, “Insulin oral hypoglycaemic agents in the pharmacology of the endocrine pancreas,” in The Pharmacological Basis of Therapeutica, J. G. Hardman, L. G. Limbird, S. Goodman, and A. G. Gilman's, Eds., pp. 1701–1704, McMillan, New York, NY, USA, 10th edition, 1996. View at Google Scholar
  27. E. S. Baginiski, P. P. Foa, and B. Zak, Methods of Enzymatic Analysis, vol. 2, Academic Press, New York, 1969, H. U. Bergmeyer, Ed.
  28. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  29. S. Panserat, E. Capilla, J. Gutierrez et al., “Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose,” Comparative Biochemistry and Physiology B, vol. 128, no. 2, pp. 275–283, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Tranulis, B. Christophersen, A. K. Blom, and B. Borrebaek, “Glucose dehydrogenase, glucose-6-phosphate dehydrogenase and hexokinase in liver of rainbow trout (Salmo gairdneri). Effects of starvation and temperature variations,” Comparative Biochemistry and Physiology B, vol. 99, no. 3, pp. 687–691, 1991. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Folch, M. Lees, and G. H. Sloane-Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Google Scholar · View at Scopus
  32. P. J. Hissin, J. E. Foley, and L. J. Wardzala, “Mechanism of insulin-resistant glucose transport activity in the enlarged adipose cell of the aged, obese rat. Relative depletion of intracellular glucose transport systems,” Journal of Clinical Investigation, vol. 70, no. 4, pp. 780–790, 1982. View at Google Scholar · View at Scopus
  33. S. Iwashita, M. Tanida, N. Terui et al., “Direct measurement of renal sympathetic nervous activity in high-fat diet-related hypertensive rats,” Life Sciences, vol. 71, no. 5, pp. 537–546, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. H.-K. Kim, C. Nelson-Dooley, M. A. Della-Fera et al., “Genistein decreases food intake, body weight, and fat pad weight and causes adipose tissue apoptosis in ovariectomized female mice,” Journal of Nutrition, vol. 136, no. 2, pp. 409–414, 2006. View at Google Scholar · View at Scopus
  35. M. Kim and Y. Kim, “Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet,” Nutrition Research Practice, vol. 4, pp. 191–195, 2010. View at Google Scholar
  36. J.-T. Hwang, I.-J. Park, J.-I. Shin et al., “Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase,” Biochemical and Biophysical Research Communications, vol. 338, no. 2, pp. 694–699, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Huang, A. Vaag, M. Hansson, J. Weng, E. S. A. Laurila, and L. Groop, “Impaired insulin-stimulated expression of the glycogen synthase gene in skeletal muscle of type 2 diabetic patients is acquired rather than inherited,” The Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 4, pp. 1584–1590, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Karlander, M. Vranic, and S. Efendic, “Mild type II diabetes markedly increases glucose cycling in the postabsorptive state and during glucose infusion irrespective of obesity,” Journal of Clinical Investigation, vol. 81, no. 6, pp. 1953–1961, 1988. View at Google Scholar · View at Scopus
  39. L. Pari and M. Amarnath Satheesh, “Antidiabetic activity of Boerhaavia diffusa L.: effect on hepatic key enzymes in experimental diabetes,” Journal of Ethnopharmacology, vol. 91, no. 1, pp. 109–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Gohil, N. Pathak, N. Jivani, V. Devmurari, and J. Patel, “Treatment with extracts of Eugenia jambolana seed and Aegle marmelos leaf extracts prevents hyperglycemia and hyperlipidemia in alloxan induced diabetic rats,” African Journal of Pharmacy and Pharmacology, vol. 4, no. 5, pp. 270–275, 2010. View at Google Scholar · View at Scopus
  41. S. Karlander, M. Vranic, and S. Efendic, “Mild type II diabetes markedly increases glucose cycling in the postabsorptive state and during glucose infusion irrespective of obesity,” Journal of Clinical Investigation, vol. 81, no. 6, pp. 1953–1961, 1988. View at Google Scholar · View at Scopus
  42. B. Matkovics, M. Kotorman, I. Sz. Varga, D. Quy Hai, and C. Varga, “Oxidative stress in experimental diabetes induced by streptozotocin,” Acta Physiologica Hungarica, vol. 85, no. 1, pp. 29–38, 1998. View at Google Scholar · View at Scopus