Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 192452, 19 pages
http://dx.doi.org/10.1155/2014/192452
Research Article

In Silico Identification of Potent PPAR- Agonists from Traditional Chinese Medicine: A Bioactivity Prediction, Virtual Screening, and Molecular Dynamics Study

1School of Pharmacy, China Medical University, Taichung 40402, Taiwan
2School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
3Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan

Received 17 December 2013; Accepted 25 January 2014; Published 26 May 2014

Academic Editor: Fuu-Jen Tsai

Copyright © 2014 Kuan-Chung Chen and Calvin Yu-Chian Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Evans, G. D. Barish, and Y.-X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Rikimaru, T. Wakabayashi, H. Abe et al., “A new class of non-thiazolidinedione, non-carboxylic-acid-based highly selective peroxisome proliferator-activated receptor (PPAR) γ agonists: design and synthesis of benzylpyrazole acylsulfonamides,” Bioorganic and Medicinal Chemistry, vol. 20, no. 2, pp. 714–733, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. J. N. Feige, L. Gelman, L. Michalik, B. Desvergne, and W. Wahli, “From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions,” Progress in Lipid Research, vol. 45, no. 2, pp. 120–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Poulsen, M. Siersbaek, and S. Mandrup, “PPARs: fatty acid sensors controlling metabolism,” Seminars in Cell & Developmental Biology, vol. 23, no. 6, pp. 631–639, 2012. View at Google Scholar
  5. M. Ahmadian, J. M. Suh, N. Hah et al., “PPARgamma signaling and metabolism: the good, the bad and the future,” Nature Medicine, vol. 19, no. 5, pp. 557–566, 2013. View at Publisher · View at Google Scholar
  6. A. Bugge and S. Mandrup, “Molecular mechanisms and genome-wide aspects of PPAR subtype specific transactivation,” PPAR Research, vol. 2010, Article ID 169506, 12 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Miller, “Today's challenges and tomorrow's opportunities: ligands to peroxisome proliferator-activated receptors as therapies for type 2 diabetes and the metabolic syndrome,” Drug Development Research, vol. 67, no. 7, pp. 574–578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Lehmann, L. B. Moore, T. A. Smith-Oliver, W. O. Wilkison, T. M. Willson, and S. A. Kliewer, “An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ),” The Journal of Biological Chemistry, vol. 270, no. 22, pp. 12953–12956, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Kubota, Y. Terauchi, H. Miki et al., “PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance,” Molecular Cell, vol. 4, no. 4, pp. 597–609, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. B. M. Forman, J. Chen, and R. M. Evans, “The peroxisome proliferator-activated receptors: ligands and activators,” Annals of the New York Academy of Sciences, vol. 804, pp. 266–275, 1996. View at Google Scholar
  11. W. W. Cheatham, “Peroxisome proliferator-activated receptor translational research and clinical experience,” The American Journal of Clinical Nutrition, vol. 91, no. 1, pp. 262S–266S, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Sharma and B. Staels, “Review: peroxisome proliferator-activated receptor γ and adipose tissue—understanding obesity-related changes in regulation of lipid and glucose metabolism,” The Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 386–395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Y.-T. Li, L. Li, J. Chen et al., “7-chloroarctinone-b as a new selective PPARγ antagonist potently blocks adipocyte differentiation,” Acta Pharmacologica Sinica, vol. 30, no. 9, pp. 1351–1358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J.-S. Wu, W.-M. Cheung, Y.-S. Tsai et al., “Ligand-activated peroxisome proliferator-activated receptor-γ protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3ε upregulation,” Circulation, vol. 119, no. 8, pp. 1124–1134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C.-L. Jao, S.-L. Huang, and K.-C. Hsu, “Angiotensin I-converting enzyme inhibitory peptides: inhibition mode, bioavailability, and antihypertensive effects,” BioMedicine, vol. 2, no. 4, pp. 130–136, 2012. View at Google Scholar
  16. M. Lin, S. Tsai, F. Wang, F.-H. Liu, J.-N. Syu, and F.-Y. Tang, “Leptin induces cell invasion and the upregulation of matrilysin in human colon cancer cells,” BioMedicine, vol. 3, no. 4, pp. 174–180, 2013. View at Google Scholar
  17. K.-P. Su, “Inflammation in psychopathology of depression: clinical, biological, and therapeutic implications,” BioMedicine, vol. 2, no. 2, pp. 68–74, 2012. View at Google Scholar
  18. M. A. Leissring, E. Malito, S. Hedouin et al., “Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin,” PLoS ONE, vol. 5, no. 5, Article ID e10504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Jiang, X. Li, W. Yang et al., “PKM2 regulates chromosome segregation and mitosis progression of tumor cells,” Molecular Cell, vol. 53, no. 1, pp. 75–87, 2014. View at Publisher · View at Google Scholar
  20. I. C. Chou, W.-D. Lin, C.-H. Wang et al., “Association analysis between Tourette's syndrome and two dopamine genes (DAT1, DBH) in Taiwanese children,” BioMedicine, vol. 3, no. 2, pp. 88–91, 2013. View at Google Scholar
  21. T. Yamamoto, W.-C. Hung, T. Takano, and A. Nishiyama, “Genetic nature and virulence of community-associated methicillin-resistant Staphylococcus aureus,” BioMedicine, vol. 3, no. 1, pp. 2–18, 2013. View at Google Scholar
  22. C.-H. Wang, W.-D. Lin, D.-T. Bau, I.-C. Chou, C.-H. Tsai, and F.-J. Tsai, “Appearance of acanthosis nigricans may precede obesity: an involvement of the insulin/IGF receptor signaling pathway,” BioMedicine, vol. 3, no. 2, pp. 82–87, 2013. View at Google Scholar
  23. W. Chen, Z. Wang, C. Jiang, and Y. Ding, “PP2A-mediated anticancer therapy,” Gastroenterology Research and Practice, vol. 2013, Article ID 675429, 10 pages, 2013. View at Publisher · View at Google Scholar
  24. Y.-M. Chang, B. K. Velmurugan, W.-W. Kuo et al., “Inhibitory effect of alpinate Oxyphyllae fructus extracts on Ang II-induced cardiac pathological remodeling-related pathways in H9c2 cardiomyoblast cells,” BioMedicine, vol. 3, no. 4, pp. 148–152, 2013. View at Publisher · View at Google Scholar
  25. Y. M. Leung, K. L. Wong, S. W. Chen et al., “Down-regulation of voltage-gated Ca2+ channels in Ca2+ store-depleted rat insulinoma RINm5F cells,” BioMedicine, vol. 3, no. 3, pp. 130–139, 2013. View at Publisher · View at Google Scholar
  26. S. P. Mahamuni, R. D. Khose, F. Menaa, and S. L. Badole, “Therapeutic approaches to drug targets in hyperlipidemia,” BioMedicine, vol. 2, no. 4, pp. 137–146, 2012. View at Google Scholar
  27. K. C. Chen, S. S. Chang, F. J. Tsai, and C. Y. Chen, “Han ethnicity-specific type 2 diabetic treatment from traditional Chinese medicine?” Journal of Biomolecular Structure & Dynamics, vol. 31, no. 11, pp. 1219–1235, 2013. View at Google Scholar
  28. K.-C. Chen, M.-F. Sun, S.-C. Yang et al., “Investigation into potent inflammation inhibitors from traditional Chinese medicine,” Chemical Biology & Drug Design, vol. 78, no. 4, pp. 679–688, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. K. C. Chen, Y. R. Jian, M. F. Sun, T. T. Chang, C. C. Lee, and C. Y. Chen, “Investigation of silent information regulator 1 (Sirt1) agonists from Traditional Chinese Medicine,” Journal of Biomolecular Structure & Dynamics, vol. 31, no. 11, pp. 1207–1218, 2013. View at Publisher · View at Google Scholar
  30. S.-C. Hsu, J.-H. Lin, S.-W. Weng et al., “Crude extract of Rheum palmatum inhibits migration and invasion of U-2 OS human osteosarcoma cells by suppression of matrix metalloproteinase-2 and -9,” BioMedicine, vol. 3, no. 3, pp. 120–129, 2013. View at Publisher · View at Google Scholar
  31. C.-Y. Chen and C. Y.-C. Chen, “Insights into designing the dual-targeted HER2/HSP90 inhibitors,” Journal of Molecular Graphics & Modelling, vol. 29, no. 1, pp. 21–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S.-C. Yang, S.-S. Chang, H.-Y. Chen, and C. Y.-C. Chen, “Identification of potent EGFR inhibitors from TCM Database@Taiwan,” PLoS Computational Biology, vol. 7, no. 10, Article ID e1002189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. A. Tsou, K. C. Chen, H. C. Lin, S. S. Chang, and C. Y. C. Chen, “Uroporphyrinogen decarboxylase as a potential target for specific components of traditional Chinese medicine: a virtual screening and molecular dynamics study,” PLoS ONE, vol. 7, no. 11, 2012. View at Google Scholar
  34. Y. A. Tsou, K. C. Chen, S. S. Chang, Y. R. Wen, and C. Y. Chen, “A possible strategy against head and neck cancer: in silico investigation of three-in-one inhibitors,” Journal of Biomolecular Structure & Dynamics, vol. 31, no. 12, pp. 1358–1369, 2013. View at Google Scholar
  35. W. I. Tou, S. S. Chang, C. C. Lee, and C. Y. C. Chen, “Drug design for neuropathic pain regulation from traditional Chinese medicine,” Scientific Reports, vol. 3, article 844, 2013. View at Publisher · View at Google Scholar
  36. K.-C. Chen, K.-W. Chang, H.-Y. Chen, and C. Y.-C. Chen, “Traditional Chinese medicine, a solution for reducing dual stroke risk factors at once?” Molecular BioSystems, vol. 7, no. 9, pp. 2711–2719, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. T.-T. Chang, K.-C. Chen, K.-W. Chang et al., “In silico pharmacology suggests ginger extracts may reduce stroke risks,” Molecular BioSystems, vol. 7, no. 9, pp. 2702–2710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. H. J. Huang, Y. R. Jian, and C. Y. Chen, “Traditional Chinese medicine application in HIV: an in silico study,” Journal of Biomolecular Structure & Dynamics, vol. 32, no. 1, pp. 1–12, 2014. View at Google Scholar
  39. S.-S. Chang, H.-J. Huang, and C. Y.-C. Chen, “Two birds with one stone? Possible dual-targeting H1N1 inhibitors from traditional Chinese medicine,” PLoS Computational Biology, vol. 7, no. 12, Article ID e1002315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. C. Chen, S. S. Chang, H. J. Huang, T. L. Lin, Y. J. Wu, and C. Y. Chen, “Three-in-one agonists for PPAR-alpha, PPAR-gamma, and PPAR-delta from traditional Chinese medicine,” Journal of Biomolecular Structure & Dynamics, vol. 30, no. 6, pp. 662–683, 2012. View at Google Scholar
  41. C. Y.-C. Chen, “TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening in silico,” PLoS ONE, vol. 6, no. 1, Article ID e15939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 46, no. 1–3, pp. 3–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Li, Z. Wang, N. Furukawa et al., “T2384, a novel antidiabetic agent with unique peroxisome proliferator-activated receptor γ binding properties,” The Journal of Biological Chemistry, vol. 283, no. 14, pp. 9168–9176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Rogers and A. J. Hopfinger, “Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships,” Journal of Chemical Information and Computer Sciences, vol. 34, no. 4, pp. 854–866, 1994. View at Google Scholar · View at Scopus
  45. C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1–27, 2011. View at Google Scholar
  46. C. M. Venkatachalam, X. Jiang, T. Oldfield, and M. Waldman, “LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites,” Journal of Molecular Graphics & Modelling, vol. 21, no. 4, pp. 289–307, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “CHARMM: a program for macromolecular energy minimization and dynamics calculations,” Journal of Computational Chemistry, vol. 4, pp. 187–217, 1983. View at Google Scholar
  48. A. C. Wallace, R. A. Laskowski, and J. M. Thornton, “LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions,” Protein Engineering, vol. 8, no. 2, pp. 127–134, 1995. View at Google Scholar · View at Scopus
  49. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GRGMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation,” Journal of Chemical Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Zoete, M. A. Cuendet, A. Grosdidier, and O. Michielin, “SwissParam: a fast force field generation tool for small organic molecules,” Journal of Computational Chemistry, vol. 32, no. 11, pp. 2359–2368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Fletcher, Optimization, Academic Press, New York, NY, USA, 1969.
  52. D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structures, Research Studies Press, 1983.
  53. L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, NY, USA, 1976.
  54. A. T. Balaban, “Highly discriminating distance-based topological index,” Chemical Physics Letters, vol. 89, no. 5, pp. 399–404, 1982. View at Google Scholar · View at Scopus