Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 350507, 6 pages
http://dx.doi.org/10.1155/2014/350507
Research Article

Anti-Inflammatory and Antinociceptive Activities of Untreated, Germinated, and Fermented Mung Bean Aqueous Extract

1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3School of Biomedical Sciences, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
4Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
5Biotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400 Serdang, Selangor, Malaysia

Received 3 March 2014; Revised 30 May 2014; Accepted 5 June 2014; Published 19 June 2014

Academic Editor: Jang-Hern Lee

Copyright © 2014 Norlaily Mohd Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Choi, D. S. Cha, and H. Jeon, “Anti-inflammatory and anti-nociceptive properties of Prunus padus,” Journal of Ethnopharmacology, vol. 144, no. 2, pp. 379–386, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Roosterman, T. Goerge, S. W. Schneider, N. W. Bunnett, and M. Steinhoff, “Neuronal control of skin function: the skin as a neuroimmunoendocrine organ,” Physiological Reviews, vol. 86, no. 4, pp. 1309–1379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. D. K. S. Lima, L. J. Ballico, F. Rocha Lapa et al., “Evaluation of the antinociceptive, anti-inflammatory and gastric antiulcer activities of the essential oil from Piper aleyreanum C.DC in rodents,” Journal of Ethnopharmacology, vol. 142, no. 1, pp. 274–282, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Zhu, W. Li, J. Li, A. Jundoria, A. E. Sama, and H. Wang, “It is not just folklore: the aqueous extract of mung bean coat is protective against sepsis,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 498467, 10 pages, 2012. View at Publisher · View at Google Scholar
  5. N. M. Ali, H. M. Yusof, K. Long et al., “Antioxidant and hepatoprotective effect of aqueous extract of germinated and fermented mung bean on ethanol-mediated liver damage,” BioMed Research International, vol. 2013, Article ID 693613, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Fotakis and J. A. Timbrell, “In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride,” Toxicology Letters, vol. 160, no. 2, pp. 171–177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Lin, C. Chen, T. Lin, J. C. Tung, and S. Wang, “Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata,” Bioresource Technology, vol. 99, no. 18, pp. 8783–8787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. E. Okokon, A. E. Udoh, S. G. Frank, and L. U. Amazu, “Anti-inflammatory and analgesic activities of Melanthera scandens,” Asian Pacific Journal of Tropical Biomedicine, vol. 2, no. 2, pp. 144–148, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. R. A. A. Mothana, M. S. Al-Said, A. J. Al-Rehaily et al., “Anti-inflammatory, antinociceptive, antipyretic and antioxidant activities and phenolic constituents from Loranthus regularis Steud. ex Sprague,” Food Chemistry, vol. 130, no. 2, pp. 344–349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Achoui, D. Appleton, M. A. Abdulla, K. Awang, M. A. Mohd, and M. R. Mustafa, “In vitro and in vivo anti-inflammatory activity of 17-O-acetylacuminolide through the inhibition of cytokines, Nf-kappaB translocation and IKKbeta activity,” PLoS ONE, vol. 5, no. 12, Article ID e15105, 2010. View at Google Scholar
  11. D. Kim, S. C. Jeong, S. Gorinstein, and S. Chon, “Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts,” Plant Foods for Human Nutrition, vol. 67, no. 1, pp. 71–75, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Lee, J. H. Lee, H. Lee et al., “Effect of mung bean ethanol extract on pro-inflammtory cytokines in LPS stimulated macrophages,” Food Science and Biotechnology, vol. 20, no. 2, pp. 519–524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Randhir and K. Shetty, “Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management,” Innovative Food Science and Emerging Technologies, vol. 8, no. 2, pp. 197–204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Fernandez-Orozco, J. Frias, H. Zielinski, M. K. Piskula, H. Kozlowska, and C. Vidal-Valverde, “Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald, Glycine max cv. jutro and Glycine max cv. merit,” Food Chemistry, vol. 111, no. 3, pp. 622–630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Guo, T. Li, K. Tang, and R. H. Liu, “Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata),” Journal of Agricultural and Food Chemistry, vol. 60, no. 44, pp. 11050–11055, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Y. Tang, M. Sivakumar, A. M. Ng, and P. Shridharan, “Anti-inflammatory and analgesic activity of novel oral aspirin-loaded nanoemulsion and nano multiple emulsion formulations generated using ultrasound cavitation,” International Journal of Pharmaceutics, vol. 430, no. 1-2, pp. 299–306, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Tian, J. Yong, H. Dang, and D. L. Kaufman, “Oral GABA treatment downregulates inflammatory responses in a mouse model of rheumatoid arthritis,” Autoimmunity, vol. 44, no. 6, pp. 465–470, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Matsuyama, K. Yoshimura, C. Shimizu, Y. Murano, H. Takeuchi, and M. Ishimoto, “Characterization of glutamate decarboxylase mediating γ-amino butyric acid increase in the early germination stage of soybean (Glycine max [L.] Merr),” Journal of Bioscience and Bioengineering, vol. 107, no. 5, pp. 538–543, 2009. View at Publisher · View at Google Scholar · View at Scopus