Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 354172, 11 pages
http://dx.doi.org/10.1155/2014/354172
Research Article

Bench to Bed Evidences for Pharmacokinetic and Pharmacodynamic Interactions Involving Oseltamivir and Chinese Medicine

1Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, China
2School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
3Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
4Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
5Hospital Authority, Hong Kong
6Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766-1854, USA

Received 26 September 2013; Revised 26 October 2013; Accepted 6 November 2013; Published 9 January 2014

Academic Editor: Min Huang

Copyright © 2014 Qi Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Oseltamivir (OA), an ethyl ester prodrug of oseltamivir carboxylate (OC), is clinically used as a potent and selective inhibitor of neuraminidase. Chinese medicines have been advocated to combine with conventional drug for avian influenza. The current study aims to investigate the potential pharmacokinetic and pharmacodynamic interactions of a Chinese medicine formula, namely, Yin Qiao San and Sang Ju Yin (CMF1), commonly used for anti-influenza in combination with OA in both rat and human, and to reveal the underlined mechanisms. It was found that although , AUC and urinary recovery of OC, as well as metabolic ratio (), were significantly decreased in a dose-dependent manner following combination use of CMF1 and OA in rat studies (), such coadministration in 14 healthy volunteers only resulted in a trend of minor decrease in the related parameters. Further mechanistic studies found that although CMF1 could reduce absorption and metabolism of OA, it appears to enhance viral inhibition of OA (). In summary, although there was potential interaction between OA and CMF1 found in rat studies, its clinical impact was expected to be minimal. The coadministration of OA and CMF1 at the clinical recommended dosages is, therefore, considered to be safe.