Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 436863, 10 pages
http://dx.doi.org/10.1155/2014/436863
Research Article

Potential Protein Phosphatase 2A Agents from Traditional Chinese Medicine against Cancer

1School of Pharmacy, China Medical University, Taichung 40402, Taiwan
2Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
3School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
4Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 18 January 2014; Accepted 30 January 2014; Published 29 April 2014

Academic Editor: Fuu-Jen Tsai

Copyright © 2014 Kuan-Chung Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. M. Porter, K. Schleicher, M. Porter, and J. R. Swedlow, “Bod1 regulates protein phosphatase 2A at mitotic kinetochores,” Nature Communications, vol. 4, article 2677, 2013. View at Publisher · View at Google Scholar
  2. S. Wera and B. A. Hemmings, “Serine/threonine protein phosphatases,” The Biochemical Journal, vol. 311, part 1, pp. 17–29, 1995. View at Google Scholar · View at Scopus
  3. M. C. Mumby and G. Walter, “Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth,” Physiological Reviews, vol. 73, no. 4, pp. 673–699, 1993. View at Google Scholar · View at Scopus
  4. V. Janssens and J. Goris, “Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling,” The Biochemical Journal, vol. 353, part 3, pp. 417–439, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Virshup, “Protein phosphatase 2A: a panoply of enzymes,” Current Opinion in Cell Biology, vol. 12, no. 2, pp. 180–185, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Ruediger, M. Hentz, J. Fait, M. Mumby, and G. Walter, “Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens,” Journal of Virology, vol. 68, no. 1, pp. 123–129, 1994. View at Google Scholar · View at Scopus
  7. G. A. Calin, M. G. di Iasio, E. Caprini et al., “Low frequency of alterations of the α (PPP2R1A) and β (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms,” Oncogene, vol. 19, no. 9, pp. 1191–1195, 2000. View at Google Scholar · View at Scopus
  8. R. Ruediger, H. T. Pham, and G. Walter, “Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the Aα subunit gene,” Oncogene, vol. 20, no. 1, pp. 10–15, 2001. View at Google Scholar · View at Scopus
  9. C. Bialojan and A. Takai, “Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics,” Biochemical Journal, vol. 256, no. 1, pp. 283–290, 1988. View at Google Scholar · View at Scopus
  10. W. Chen, Z. Wang, C. Jiang, and Y. Ding, “PP2A-mediated anticancer therapy,” Gastroenterology Research and Practice, vol. 2013, Article ID 675429, 10 pages, 2013. View at Publisher · View at Google Scholar
  11. A. H. Schönthal, “Role of serine/threonine protein phosphatase 2A in cancer,” Cancer Letters, vol. 170, no. 1, pp. 1–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Jiang, X. Li, W. Yang et al., “PKM2 regulates chromosome segregation and mitosis progression of tumor cells,” Molecular Cell, vol. 53, no. 1, pp. 75–87, 2014. View at Publisher · View at Google Scholar
  13. I.-C. Chou, W.-D. Lin, C.-H. Wang et al., “Association analysis between Tourette's syndrome and two dopamine genes (DAT1, DBH) in Taiwanese children,” BioMedicine, vol. 3, no. 2, pp. 88–91, 2013. View at Publisher · View at Google Scholar
  14. T. Yamamoto, W.-C. Hung, T. Takano, and A. Nishiyama, “Genetic nature and virulence of community-associated methicillin-resistant Staphylococcus aureus,” BioMedicine, vol. 3, no. 1, pp. 2–18, 2013. View at Publisher · View at Google Scholar
  15. C.-H. Wang, W.-D. Lin, D.-T. Bau, I.-C. Choua, C.-H. Tsai, and F.-J. Tsai, “Appearance of acanthosis nigricans may precede obesity: an involvement of the insulin/IGF receptor signaling pathway,” BioMedicine, vol. 3, no. 2, pp. 82–87, 2013. View at Google Scholar
  16. Y.-M. Chang, B. K. Velmurugan, W.-W. Kuo et al., “Inhibitory effect of alpinate Oxyphyllae fructus extracts on Ang II-induced cardiac pathological remodeling-related pathways in H9c2 cardiomyoblast cells,” BioMedicine, vol. 3, no. 4, pp. 148–152, 2013. View at Google Scholar
  17. Y. M. Leung, K. L. Wong, S. W. Chen et al., “Down-regulation of voltage-gated Ca2+ channels in Ca2+ store-depleted rat insulinoma RINm5F cells,” BioMedicine, vol. 3, no. 3, pp. 130–139, 2013. View at Google Scholar
  18. S. P. Mahamuni, R. D. Khose, F. Menaa, and S. L. Badole, “Therapeutic approaches to drug targets in hyperlipidemia,” BioMedicine, vol. 2, no. 4, pp. 137–146, 2012. View at Google Scholar
  19. C.-L. Jao, S.-L. Huang, and K.-C. Hsu, “Angiotensin I-converting enzyme inhibitory peptides: inhibition mode, bioavailability, and antihypertensive effects,” BioMedicine, vol. 2, no. 4, pp. 130–136, 2012. View at Google Scholar
  20. M.-C. Lin, S.-Y. Tsai, F.-Y. Wang, F.-H. Liu, J.-N. Syu, and F.-Y. Tang, “Leptin induces cell invasion and the upregulation of matrilysin in human colon cancer cells,” BioMedicine, vol. 3, no. 4, pp. 174–180, 2013. View at Google Scholar
  21. K.-P. Su, “Inflammation in psychopathology of depression: clinical, biological, and therapeutic implications,” BioMedicine, vol. 2, no. 2, pp. 68–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Leissring, E. Malito, S. Hedouin et al., “Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin,” PLoS ONE, vol. 5, no. 5, p. e10504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C.-Y. Chen and C. Y.-C. Chen, “Insights into designing the dual-targeted HER2/HSP90 inhibitors,” Journal of Molecular Graphics & Modelling, vol. 29, no. 1, pp. 21–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S.-C. Yang, S.-S. Chang, H.-Y. Chen, and C. Y.-C. Chen, “Identification of potent EGFR inhibitors from TCM database@Taiwan,” PLoS Computational Biology, vol. 7, no. 10, Article ID e1002189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. A. Tsou, K. C. Chen, H. C. Lin, S. S. Chang, and C. Y. C. Chen, “Uroporphyrinogen decarboxylase as a potential target for specific components of traditional Chinese medicine: a virtual screening and molecular dynamics study,” PLoS ONE, vol. 7, no. 11, Article ID e50087, 2012. View at Publisher · View at Google Scholar
  26. Y. A. Tsou, K. C. Chen, S. S. Chang, Y. R. Wen, and C. Y. Chen, “A possible strategy against head and neck cancer: in silico investigation of three-in-one inhibitors,” Journal of Biomolecular Structure & Dynamics, vol. 31, no. 12, pp. 1358–1369, 2013. View at Publisher · View at Google Scholar
  27. K. C. Chen, S. S. Chang, F. J. Tsai, and C. Y. Chen, “Han ethnicity-specific type 2 diabetic treatment from traditional Chinese medicine?” Journal of Biomolecular Structure & Dynamics, vol. 31, no. 11, pp. 1219–1235, 2013. View at Google Scholar
  28. K.-C. Chen, M.-F. Sun, S.-C. Yang et al., “Investigation into potent inflammation inhibitors from traditional Chinese medicine,” Chemical Biology & Drug Design, vol. 78, no. 4, pp. 679–688, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S.-S. Chang, H.-J. Huang, and C. Y.-C. Chen, “Two birds with one stone? Possible dual-targeting H1N1 inhibitors from traditional Chinese medicine,” PLoS Computational Biology, vol. 7, no. 12, Article ID e1002315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. K. C. Chen, S. S. Chang, H. J. Huang, T. L. Lin, Y. J. Wu, and C. Y. Chen, “Three-in-one agonists for PPAR-alpha, PPAR-gamma, and PPAR-delta from traditional Chinese medicine,” Journal of Biomolecular Structure & Dynamics, vol. 30, no. 6, pp. 662–683, 2012. View at Google Scholar
  31. K.-C. Chen and C. Yu-Chian Chen, “Stroke prevention by traditional Chinese medicine? A genetic algorithm, support vector machine and molecular dynamics approach,” Soft Matter, vol. 7, no. 8, pp. 4001–4008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. K.-C. Chen, K.-W. Chang, H.-Y. Chen, and C. Y.-C. Chen, “Traditional Chinese medicine, a solution for reducing dual stroke risk factors at once?” Molecular BioSystems, vol. 7, no. 9, pp. 2711–2719, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. T.-T. Chang, K.-C. Chen, K.-W. Chang et al., “In silico pharmacology suggests ginger extracts may reduce stroke risks,” Molecular BioSystems, vol. 7, no. 9, pp. 2702–2710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. J. Huang, Y. R. Jian, and C. Y. Chen, “Traditional Chinese medicine application in HIV: an in silico study,” Journal of Biomolecular Structure & Dynamics, vol. 32, no. 1, pp. 1–12, 2014. View at Google Scholar
  35. W. I. Tou, S. S. Chang, C. C. Lee, and C. Y. Chen, “Drug design for neuropathic pain regulation from traditional Chinese medicine,” Scientific Reports, vol. 3, article 844, 2013. View at Publisher · View at Google Scholar
  36. K. C. Chen, Y. R. Jian, M. F. Sun, T. T. Chang, C. C. Lee, and C. Y. Chen, “Investigation of silent information regulator 1 (Sirt1) agonists from Traditional Chinese Medicine,” Journal of Biomolecular Structure & Dynamics, vol. 31, no. 11, pp. 1207–1218, 2013. View at Google Scholar
  37. C. Y.-C. Chen, “TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening in silico,” PLoS ONE, vol. 6, no. 1, Article ID e15939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. W. I. Tou and C. Y. Chen, “May disordered protein cause serious drug side effect?” Drug Discovery Today, 2013. View at Publisher · View at Google Scholar
  39. C. Y. Chen and W. I. Tou, “How to design a drug for the disordered proteins?” Drug Discovery Today, vol. 18, no. 19-20, pp. 910–915, 2013. View at Publisher · View at Google Scholar
  40. Z. Xu, B. Cetin, M. Anger et al., “Structure and function of the PP2A-shugoshin interaction,” Molecular Cell, vol. 35, no. 4, pp. 426–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Xue, R. L. Dunbrack, R. W. Williams, A. K. Dunker, and V. N. Uversky, “PONDR-FIT: a meta-predictor of intrinsically disordered amino acids,” Biochimica et Biophysica Acta, vol. 1804, no. 4, pp. 996–1010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “CHARMM: a program for macromolecular energy minimization and dynamics calculations,” Journal of Computational Chemistry, vol. 4, pp. 187–217, 1983. View at Google Scholar
  43. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 46, no. 1–3, pp. 3–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. C. M. Venkatachalam, X. Jiang, T. Oldfield, and M. Waldman, “LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites,” Journal of Molecular Graphics and Modelling, vol. 21, no. 4, pp. 289–307, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GRGMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation,” Journal of Chemical Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Zoete, M. A. Cuendet, A. Grosdidier, and O. Michielin, “SwissParam: a fast force field generation tool for small organic molecules,” Journal of Computational Chemistry, vol. 32, no. 11, pp. 2359–2368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Fletcher, Optimization, Academic Press, New York, NY, USA, 1969.