Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 523847, 8 pages
Research Article

Protective Effect of Shen-Fu Injection on Neuronal Mitochondrial Function in a Porcine Model of Prolonged Cardiac Arrest

Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Worker’s Stadium South Road, Chaoyang District, Beijing 100020, China

Received 17 May 2014; Accepted 31 October 2014; Published 19 November 2014

Academic Editor: Hyunsu Bae

Copyright © 2014 Wei Gu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background. Shen-Fu injection (SFI) following cardiac arrest exhibits neurological effects, but its effect on neurological dysfunction is unclear. This study sought to investigate the protective effect of SFI on nerve cells in a porcine model of cardiac arrest. Methods. After eight minutes of untreated ventricular fibrillation (VF) and 2 minutes of basic life support, 24 pigs were randomized and divided into three cardiopulmonary resuscitation groups, which received central venous injection of either Shen-Fu (SFI group; 1.0 ml/kg), epinephrine (EP group; 0.02 mg/kg), or saline (SA group). Surviving pigs were sacrificed at 24 h after ROSC and brains were removed for analysis for morphologic changes of mitochondria by electron microscopy, for mitochondrial transmembrane potential (MTP) by flow cytometry, and for opening of the mitochondrial permeability transition pore (MPTP) by mitochondrial light scattering. Results. Compared with the EP and SA groups, SFI treatment reduced opening of MPTP, showing higher MMP. In addition, animals treated with SFI showed slight cerebral ultrastructure damage under the electron microscopy. Conclusion. Shen-Fu injection alleviated brain injury, improved neurological ultrastructure, stabilized membrane potential, and inhibited opening of MPTP. Therefore, SFI could significantly attenuate postresuscitation cerebral ischemia and reperfusion injury by modulating mitochondrial dysfunction of nerve cells.